![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmidm | Structured version Visualization version GIF version |
Description: Subgroup sum is idempotent. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) (Proof shortened by AV, 27-Dec-2023.) |
Ref | Expression |
---|---|
lsmub1.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmidm | ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgsubm 19137 | . 2 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ∈ (SubMnd‘𝐺)) | |
2 | lsmub1.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | 2 | smndlsmidm 19649 | . 2 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6553 (class class class)co 7423 SubMndcsubmnd 18767 SubGrpcsubg 19109 LSSumclsm 19627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-1st 8002 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-0g 17451 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-grp 18926 df-minusg 18927 df-subg 19112 df-lsm 19629 |
This theorem is referenced by: lsmlub 19657 lspabs2 21048 lspabs3 21049 lsatcv0eq 38705 lsatcv1 38706 lsatcvat3 38710 dia2dimlem13 40735 dihjatcclem1 41077 dvh3dimatN 41098 dvh2dimatN 41099 mapdindp0 41378 mapdh6dN 41398 hdmap1l6d 41472 |
Copyright terms: Public domain | W3C validator |