| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmlub | Structured version Visualization version GIF version | ||
| Description: The least upper bound property of subgroup sum. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsmub1.p | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmlub | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) ↔ (𝑆 ⊕ 𝑇) ⊆ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 2 | lsmub1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐺) | |
| 3 | 2 | lsmless12 19572 | . . . . 5 ⊢ (((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈)) → (𝑆 ⊕ 𝑇) ⊆ (𝑈 ⊕ 𝑈)) |
| 4 | 3 | ex 412 | . . . 4 ⊢ ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑈 ⊕ 𝑈))) |
| 5 | 1, 1, 4 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑈 ⊕ 𝑈))) |
| 6 | 2 | lsmidm 19573 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) |
| 7 | 6 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑈 ⊕ 𝑈) = 𝑈) |
| 8 | 7 | sseq2d 3967 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊕ 𝑇) ⊆ (𝑈 ⊕ 𝑈) ↔ (𝑆 ⊕ 𝑇) ⊆ 𝑈)) |
| 9 | 5, 8 | sylibd 239 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ 𝑈)) |
| 10 | 2 | lsmub1 19567 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 ⊕ 𝑇)) |
| 11 | 10 | 3adant3 1132 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 ⊕ 𝑇)) |
| 12 | sstr2 3941 | . . . 4 ⊢ (𝑆 ⊆ (𝑆 ⊕ 𝑇) → ((𝑆 ⊕ 𝑇) ⊆ 𝑈 → 𝑆 ⊆ 𝑈)) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊕ 𝑇) ⊆ 𝑈 → 𝑆 ⊆ 𝑈)) |
| 14 | 2 | lsmub2 19568 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑆 ⊕ 𝑇)) |
| 15 | 14 | 3adant3 1132 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑆 ⊕ 𝑇)) |
| 16 | sstr2 3941 | . . . 4 ⊢ (𝑇 ⊆ (𝑆 ⊕ 𝑇) → ((𝑆 ⊕ 𝑇) ⊆ 𝑈 → 𝑇 ⊆ 𝑈)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊕ 𝑇) ⊆ 𝑈 → 𝑇 ⊆ 𝑈)) |
| 18 | 13, 17 | jcad 512 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊕ 𝑇) ⊆ 𝑈 → (𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈))) |
| 19 | 9, 18 | impbid 212 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) ↔ (𝑆 ⊕ 𝑇) ⊆ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 SubGrpcsubg 19030 LSSumclsm 19544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-subg 19033 df-lsm 19546 |
| This theorem is referenced by: lsmss1 19575 lsmss2 19577 lsmmod 19585 lsmcntz 19589 dprd2da 19954 dmdprdsplit2lem 19957 dprdsplit 19960 pgpfac1lem1 19986 lsmsp 21018 lspprabs 21027 lsmcv 21076 lrelat 39052 lsatexch 39081 lsatcvatlem 39087 lsatcvat 39088 dihjustlem 41254 dihord1 41256 dihord5apre 41300 lclkrlem2f 41550 lclkrlem2v 41566 lclkrslem2 41576 lcfrlem25 41605 lcfrlem35 41615 mapdlsm 41702 lspindp5 41808 |
| Copyright terms: Public domain | W3C validator |