| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmlub | Structured version Visualization version GIF version | ||
| Description: The least upper bound property of subgroup sum. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsmub1.p | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmlub | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) ↔ (𝑆 ⊕ 𝑇) ⊆ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 2 | lsmub1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐺) | |
| 3 | 2 | lsmless12 19648 | . . . . 5 ⊢ (((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈)) → (𝑆 ⊕ 𝑇) ⊆ (𝑈 ⊕ 𝑈)) |
| 4 | 3 | ex 412 | . . . 4 ⊢ ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑈 ⊕ 𝑈))) |
| 5 | 1, 1, 4 | syl2anc 584 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑈 ⊕ 𝑈))) |
| 6 | 2 | lsmidm 19649 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → (𝑈 ⊕ 𝑈) = 𝑈) |
| 7 | 6 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑈 ⊕ 𝑈) = 𝑈) |
| 8 | 7 | sseq2d 3996 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊕ 𝑇) ⊆ (𝑈 ⊕ 𝑈) ↔ (𝑆 ⊕ 𝑇) ⊆ 𝑈)) |
| 9 | 5, 8 | sylibd 239 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ 𝑈)) |
| 10 | 2 | lsmub1 19643 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 ⊕ 𝑇)) |
| 11 | 10 | 3adant3 1132 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 ⊕ 𝑇)) |
| 12 | sstr2 3970 | . . . 4 ⊢ (𝑆 ⊆ (𝑆 ⊕ 𝑇) → ((𝑆 ⊕ 𝑇) ⊆ 𝑈 → 𝑆 ⊆ 𝑈)) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊕ 𝑇) ⊆ 𝑈 → 𝑆 ⊆ 𝑈)) |
| 14 | 2 | lsmub2 19644 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑆 ⊕ 𝑇)) |
| 15 | 14 | 3adant3 1132 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑆 ⊕ 𝑇)) |
| 16 | sstr2 3970 | . . . 4 ⊢ (𝑇 ⊆ (𝑆 ⊕ 𝑇) → ((𝑆 ⊕ 𝑇) ⊆ 𝑈 → 𝑇 ⊆ 𝑈)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊕ 𝑇) ⊆ 𝑈 → 𝑇 ⊆ 𝑈)) |
| 18 | 13, 17 | jcad 512 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊕ 𝑇) ⊆ 𝑈 → (𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈))) |
| 19 | 9, 18 | impbid 212 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → ((𝑆 ⊆ 𝑈 ∧ 𝑇 ⊆ 𝑈) ↔ (𝑆 ⊕ 𝑇) ⊆ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 ‘cfv 6541 (class class class)co 7413 SubGrpcsubg 19107 LSSumclsm 19620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-grp 18923 df-minusg 18924 df-subg 19110 df-lsm 19622 |
| This theorem is referenced by: lsmss1 19651 lsmss2 19653 lsmmod 19661 lsmcntz 19665 dprd2da 20030 dmdprdsplit2lem 20033 dprdsplit 20036 pgpfac1lem1 20062 lsmsp 21053 lspprabs 21062 lsmcv 21111 lrelat 38974 lsatexch 39003 lsatcvatlem 39009 lsatcvat 39010 dihjustlem 41177 dihord1 41179 dihord5apre 41223 lclkrlem2f 41473 lclkrlem2v 41489 lclkrslem2 41499 lcfrlem25 41528 lcfrlem35 41538 mapdlsm 41625 lspindp5 41731 |
| Copyright terms: Public domain | W3C validator |