![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmless2x | Structured version Visualization version GIF version |
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmless2x | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑅 ⊕ 𝑇) ⊆ (𝑅 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4078 | . . . . 5 ⊢ (𝑇 ⊆ 𝑈 → (∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | |
2 | 1 | reximdv 3176 | . . . 4 ⊢ (𝑇 ⊆ 𝑈 → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
3 | 2 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
4 | simpl1 1191 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝐺 ∈ 𝑉) | |
5 | simpl2 1192 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑅 ⊆ 𝐵) | |
6 | simpr 484 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑈) | |
7 | simpl3 1193 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑈 ⊆ 𝐵) | |
8 | 6, 7 | sstrd 4019 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝐵) |
9 | lsmless2.v | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
10 | eqid 2740 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
11 | lsmless2.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
12 | 9, 10, 11 | lsmelvalx 19682 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑥 ∈ (𝑅 ⊕ 𝑇) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
13 | 4, 5, 8, 12 | syl3anc 1371 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑥 ∈ (𝑅 ⊕ 𝑇) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
14 | 9, 10, 11 | lsmelvalx 19682 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
15 | 14 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
16 | 3, 13, 15 | 3imtr4d 294 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑥 ∈ (𝑅 ⊕ 𝑇) → 𝑥 ∈ (𝑅 ⊕ 𝑈))) |
17 | 16 | ssrdv 4014 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑅 ⊕ 𝑇) ⊆ (𝑅 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 LSSumclsm 19676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-lsm 19678 |
This theorem is referenced by: lsmless2 19703 lsmssspx 21110 |
Copyright terms: Public domain | W3C validator |