![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmless2x | Structured version Visualization version GIF version |
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmless2x | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑅 ⊕ 𝑇) ⊆ (𝑅 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4042 | . . . . 5 ⊢ (𝑇 ⊆ 𝑈 → (∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | |
2 | 1 | reximdv 3160 | . . . 4 ⊢ (𝑇 ⊆ 𝑈 → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
3 | 2 | adantl 480 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
4 | simpl1 1188 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝐺 ∈ 𝑉) | |
5 | simpl2 1189 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑅 ⊆ 𝐵) | |
6 | simpr 483 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑈) | |
7 | simpl3 1190 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑈 ⊆ 𝐵) | |
8 | 6, 7 | sstrd 3983 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝐵) |
9 | lsmless2.v | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
10 | eqid 2725 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
11 | lsmless2.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
12 | 9, 10, 11 | lsmelvalx 19599 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑥 ∈ (𝑅 ⊕ 𝑇) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
13 | 4, 5, 8, 12 | syl3anc 1368 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑥 ∈ (𝑅 ⊕ 𝑇) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
14 | 9, 10, 11 | lsmelvalx 19599 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
15 | 14 | adantr 479 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
16 | 3, 13, 15 | 3imtr4d 293 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑥 ∈ (𝑅 ⊕ 𝑇) → 𝑥 ∈ (𝑅 ⊕ 𝑈))) |
17 | 16 | ssrdv 3978 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑅 ⊕ 𝑇) ⊆ (𝑅 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 ⊆ wss 3939 ‘cfv 6543 (class class class)co 7416 Basecbs 17179 +gcplusg 17232 LSSumclsm 19593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7991 df-2nd 7992 df-lsm 19595 |
This theorem is referenced by: lsmless2 19620 lsmssspx 20977 |
Copyright terms: Public domain | W3C validator |