MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless2x Structured version   Visualization version   GIF version

Theorem lsmless2x 19542
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless2x (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (𝑅 𝑇) ⊆ (𝑅 𝑈))

Proof of Theorem lsmless2x
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 4007 . . . . 5 (𝑇𝑈 → (∃𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
21reximdv 3144 . . . 4 (𝑇𝑈 → (∃𝑦𝑅𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
32adantl 481 . . 3 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (∃𝑦𝑅𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
4 simpl1 1192 . . . 4 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → 𝐺𝑉)
5 simpl2 1193 . . . 4 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → 𝑅𝐵)
6 simpr 484 . . . . 5 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → 𝑇𝑈)
7 simpl3 1194 . . . . 5 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → 𝑈𝐵)
86, 7sstrd 3948 . . . 4 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → 𝑇𝐵)
9 lsmless2.v . . . . 5 𝐵 = (Base‘𝐺)
10 eqid 2729 . . . . 5 (+g𝐺) = (+g𝐺)
11 lsmless2.s . . . . 5 = (LSSum‘𝐺)
129, 10, 11lsmelvalx 19537 . . . 4 ((𝐺𝑉𝑅𝐵𝑇𝐵) → (𝑥 ∈ (𝑅 𝑇) ↔ ∃𝑦𝑅𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
134, 5, 8, 12syl3anc 1373 . . 3 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (𝑥 ∈ (𝑅 𝑇) ↔ ∃𝑦𝑅𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
149, 10, 11lsmelvalx 19537 . . . 4 ((𝐺𝑉𝑅𝐵𝑈𝐵) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
1514adantr 480 . . 3 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
163, 13, 153imtr4d 294 . 2 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (𝑥 ∈ (𝑅 𝑇) → 𝑥 ∈ (𝑅 𝑈)))
1716ssrdv 3943 1 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (𝑅 𝑇) ⊆ (𝑅 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3905  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  LSSumclsm 19531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-lsm 19533
This theorem is referenced by:  lsmless2  19558  lsmssspx  21010
  Copyright terms: Public domain W3C validator