Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless2x Structured version   Visualization version   GIF version

Theorem lsmless2x 18765
 Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless2x (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (𝑅 𝑇) ⊆ (𝑅 𝑈))

Proof of Theorem lsmless2x
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 3982 . . . . 5 (𝑇𝑈 → (∃𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
21reximdv 3232 . . . 4 (𝑇𝑈 → (∃𝑦𝑅𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
32adantl 485 . . 3 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (∃𝑦𝑅𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
4 simpl1 1188 . . . 4 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → 𝐺𝑉)
5 simpl2 1189 . . . 4 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → 𝑅𝐵)
6 simpr 488 . . . . 5 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → 𝑇𝑈)
7 simpl3 1190 . . . . 5 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → 𝑈𝐵)
86, 7sstrd 3925 . . . 4 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → 𝑇𝐵)
9 lsmless2.v . . . . 5 𝐵 = (Base‘𝐺)
10 eqid 2798 . . . . 5 (+g𝐺) = (+g𝐺)
11 lsmless2.s . . . . 5 = (LSSum‘𝐺)
129, 10, 11lsmelvalx 18760 . . . 4 ((𝐺𝑉𝑅𝐵𝑇𝐵) → (𝑥 ∈ (𝑅 𝑇) ↔ ∃𝑦𝑅𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
134, 5, 8, 12syl3anc 1368 . . 3 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (𝑥 ∈ (𝑅 𝑇) ↔ ∃𝑦𝑅𝑧𝑇 𝑥 = (𝑦(+g𝐺)𝑧)))
149, 10, 11lsmelvalx 18760 . . . 4 ((𝐺𝑉𝑅𝐵𝑈𝐵) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
1514adantr 484 . . 3 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
163, 13, 153imtr4d 297 . 2 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (𝑥 ∈ (𝑅 𝑇) → 𝑥 ∈ (𝑅 𝑈)))
1716ssrdv 3921 1 (((𝐺𝑉𝑅𝐵𝑈𝐵) ∧ 𝑇𝑈) → (𝑅 𝑇) ⊆ (𝑅 𝑈))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∃wrex 3107   ⊆ wss 3881  ‘cfv 6324  (class class class)co 7135  Basecbs 16477  +gcplusg 16559  LSSumclsm 18754 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7673  df-2nd 7674  df-lsm 18756 This theorem is referenced by:  lsmless2  18781  lsmssspx  19856
 Copyright terms: Public domain W3C validator