Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmless2x | Structured version Visualization version GIF version |
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmless2x | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑅 ⊕ 𝑇) ⊆ (𝑅 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 3968 | . . . . 5 ⊢ (𝑇 ⊆ 𝑈 → (∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | |
2 | 1 | reximdv 3192 | . . . 4 ⊢ (𝑇 ⊆ 𝑈 → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
3 | 2 | adantl 485 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
4 | simpl1 1193 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝐺 ∈ 𝑉) | |
5 | simpl2 1194 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑅 ⊆ 𝐵) | |
6 | simpr 488 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑈) | |
7 | simpl3 1195 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑈 ⊆ 𝐵) | |
8 | 6, 7 | sstrd 3911 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝐵) |
9 | lsmless2.v | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
10 | eqid 2737 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
11 | lsmless2.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
12 | 9, 10, 11 | lsmelvalx 19029 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑥 ∈ (𝑅 ⊕ 𝑇) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
13 | 4, 5, 8, 12 | syl3anc 1373 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑥 ∈ (𝑅 ⊕ 𝑇) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑇 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
14 | 9, 10, 11 | lsmelvalx 19029 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
15 | 14 | adantr 484 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
16 | 3, 13, 15 | 3imtr4d 297 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑥 ∈ (𝑅 ⊕ 𝑇) → 𝑥 ∈ (𝑅 ⊕ 𝑈))) |
17 | 16 | ssrdv 3907 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑇 ⊆ 𝑈) → (𝑅 ⊕ 𝑇) ⊆ (𝑅 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 ⊆ wss 3866 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 LSSumclsm 19023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-lsm 19025 |
This theorem is referenced by: lsmless2 19050 lsmssspx 20125 |
Copyright terms: Public domain | W3C validator |