MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmssspx Structured version   Visualization version   GIF version

Theorem lsmssspx 20350
Description: Subspace sum (in its extended domain) is a subset of the span of the union of its arguments. (Contributed by NM, 6-Aug-2014.)
Hypotheses
Ref Expression
lsmsp2.v 𝑉 = (Base‘𝑊)
lsmsp2.n 𝑁 = (LSpan‘𝑊)
lsmsp2.p = (LSSum‘𝑊)
lsmssspx.t (𝜑𝑇𝑉)
lsmssspx.u (𝜑𝑈𝑉)
lsmssspx.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
lsmssspx (𝜑 → (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈)))

Proof of Theorem lsmssspx
StepHypRef Expression
1 lsmssspx.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lsmssspx.t . . . . 5 (𝜑𝑇𝑉)
3 lsmsp2.v . . . . . 6 𝑉 = (Base‘𝑊)
4 lsmsp2.n . . . . . 6 𝑁 = (LSpan‘𝑊)
53, 4lspssv 20245 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → (𝑁𝑇) ⊆ 𝑉)
61, 2, 5syl2anc 584 . . . 4 (𝜑 → (𝑁𝑇) ⊆ 𝑉)
7 lsmssspx.u . . . 4 (𝜑𝑈𝑉)
83, 4lspssid 20247 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → 𝑇 ⊆ (𝑁𝑇))
91, 2, 8syl2anc 584 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑇))
10 lsmsp2.p . . . . 5 = (LSSum‘𝑊)
113, 10lsmless1x 19249 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁𝑇) ⊆ 𝑉𝑈𝑉) ∧ 𝑇 ⊆ (𝑁𝑇)) → (𝑇 𝑈) ⊆ ((𝑁𝑇) 𝑈))
121, 6, 7, 9, 11syl31anc 1372 . . 3 (𝜑 → (𝑇 𝑈) ⊆ ((𝑁𝑇) 𝑈))
133, 4lspssv 20245 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) ⊆ 𝑉)
141, 7, 13syl2anc 584 . . . 4 (𝜑 → (𝑁𝑈) ⊆ 𝑉)
153, 4lspssid 20247 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
161, 7, 15syl2anc 584 . . . 4 (𝜑𝑈 ⊆ (𝑁𝑈))
173, 10lsmless2x 19250 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁𝑇) ⊆ 𝑉 ∧ (𝑁𝑈) ⊆ 𝑉) ∧ 𝑈 ⊆ (𝑁𝑈)) → ((𝑁𝑇) 𝑈) ⊆ ((𝑁𝑇) (𝑁𝑈)))
181, 6, 14, 16, 17syl31anc 1372 . . 3 (𝜑 → ((𝑁𝑇) 𝑈) ⊆ ((𝑁𝑇) (𝑁𝑈)))
1912, 18sstrd 3931 . 2 (𝜑 → (𝑇 𝑈) ⊆ ((𝑁𝑇) (𝑁𝑈)))
203, 4, 10lsmsp2 20349 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) (𝑁𝑈)) = (𝑁‘(𝑇𝑈)))
211, 2, 7, 20syl3anc 1370 . 2 (𝜑 → ((𝑁𝑇) (𝑁𝑈)) = (𝑁‘(𝑇𝑈)))
2219, 21sseqtrd 3961 1 (𝜑 → (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cun 3885  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  LSSumclsm 19239  LModclmod 20123  LSpanclspn 20233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lsp 20234
This theorem is referenced by:  djhsumss  39421
  Copyright terms: Public domain W3C validator