MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmssspx Structured version   Visualization version   GIF version

Theorem lsmssspx 20971
Description: Subspace sum (in its extended domain) is a subset of the span of the union of its arguments. (Contributed by NM, 6-Aug-2014.)
Hypotheses
Ref Expression
lsmsp2.v 𝑉 = (Base‘𝑊)
lsmsp2.n 𝑁 = (LSpan‘𝑊)
lsmsp2.p = (LSSum‘𝑊)
lsmssspx.t (𝜑𝑇𝑉)
lsmssspx.u (𝜑𝑈𝑉)
lsmssspx.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
lsmssspx (𝜑 → (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈)))

Proof of Theorem lsmssspx
StepHypRef Expression
1 lsmssspx.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lsmssspx.t . . . . 5 (𝜑𝑇𝑉)
3 lsmsp2.v . . . . . 6 𝑉 = (Base‘𝑊)
4 lsmsp2.n . . . . . 6 𝑁 = (LSpan‘𝑊)
53, 4lspssv 20865 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → (𝑁𝑇) ⊆ 𝑉)
61, 2, 5syl2anc 584 . . . 4 (𝜑 → (𝑁𝑇) ⊆ 𝑉)
7 lsmssspx.u . . . 4 (𝜑𝑈𝑉)
83, 4lspssid 20867 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → 𝑇 ⊆ (𝑁𝑇))
91, 2, 8syl2anc 584 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑇))
10 lsmsp2.p . . . . 5 = (LSSum‘𝑊)
113, 10lsmless1x 19550 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁𝑇) ⊆ 𝑉𝑈𝑉) ∧ 𝑇 ⊆ (𝑁𝑇)) → (𝑇 𝑈) ⊆ ((𝑁𝑇) 𝑈))
121, 6, 7, 9, 11syl31anc 1375 . . 3 (𝜑 → (𝑇 𝑈) ⊆ ((𝑁𝑇) 𝑈))
133, 4lspssv 20865 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) ⊆ 𝑉)
141, 7, 13syl2anc 584 . . . 4 (𝜑 → (𝑁𝑈) ⊆ 𝑉)
153, 4lspssid 20867 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
161, 7, 15syl2anc 584 . . . 4 (𝜑𝑈 ⊆ (𝑁𝑈))
173, 10lsmless2x 19551 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁𝑇) ⊆ 𝑉 ∧ (𝑁𝑈) ⊆ 𝑉) ∧ 𝑈 ⊆ (𝑁𝑈)) → ((𝑁𝑇) 𝑈) ⊆ ((𝑁𝑇) (𝑁𝑈)))
181, 6, 14, 16, 17syl31anc 1375 . . 3 (𝜑 → ((𝑁𝑇) 𝑈) ⊆ ((𝑁𝑇) (𝑁𝑈)))
1912, 18sstrd 3954 . 2 (𝜑 → (𝑇 𝑈) ⊆ ((𝑁𝑇) (𝑁𝑈)))
203, 4, 10lsmsp2 20970 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) (𝑁𝑈)) = (𝑁‘(𝑇𝑈)))
211, 2, 7, 20syl3anc 1373 . 2 (𝜑 → ((𝑁𝑇) (𝑁𝑈)) = (𝑁‘(𝑇𝑈)))
2219, 21sseqtrd 3980 1 (𝜑 → (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3909  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  LSSumclsm 19540  LModclmod 20742  LSpanclspn 20853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19225  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20744  df-lss 20814  df-lsp 20854
This theorem is referenced by:  djhsumss  41374
  Copyright terms: Public domain W3C validator