MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmssspx Structured version   Visualization version   GIF version

Theorem lsmssspx 21010
Description: Subspace sum (in its extended domain) is a subset of the span of the union of its arguments. (Contributed by NM, 6-Aug-2014.)
Hypotheses
Ref Expression
lsmsp2.v 𝑉 = (Base‘𝑊)
lsmsp2.n 𝑁 = (LSpan‘𝑊)
lsmsp2.p = (LSSum‘𝑊)
lsmssspx.t (𝜑𝑇𝑉)
lsmssspx.u (𝜑𝑈𝑉)
lsmssspx.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
lsmssspx (𝜑 → (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈)))

Proof of Theorem lsmssspx
StepHypRef Expression
1 lsmssspx.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lsmssspx.t . . . . 5 (𝜑𝑇𝑉)
3 lsmsp2.v . . . . . 6 𝑉 = (Base‘𝑊)
4 lsmsp2.n . . . . . 6 𝑁 = (LSpan‘𝑊)
53, 4lspssv 20904 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → (𝑁𝑇) ⊆ 𝑉)
61, 2, 5syl2anc 584 . . . 4 (𝜑 → (𝑁𝑇) ⊆ 𝑉)
7 lsmssspx.u . . . 4 (𝜑𝑈𝑉)
83, 4lspssid 20906 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → 𝑇 ⊆ (𝑁𝑇))
91, 2, 8syl2anc 584 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑇))
10 lsmsp2.p . . . . 5 = (LSSum‘𝑊)
113, 10lsmless1x 19541 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁𝑇) ⊆ 𝑉𝑈𝑉) ∧ 𝑇 ⊆ (𝑁𝑇)) → (𝑇 𝑈) ⊆ ((𝑁𝑇) 𝑈))
121, 6, 7, 9, 11syl31anc 1375 . . 3 (𝜑 → (𝑇 𝑈) ⊆ ((𝑁𝑇) 𝑈))
133, 4lspssv 20904 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) ⊆ 𝑉)
141, 7, 13syl2anc 584 . . . 4 (𝜑 → (𝑁𝑈) ⊆ 𝑉)
153, 4lspssid 20906 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
161, 7, 15syl2anc 584 . . . 4 (𝜑𝑈 ⊆ (𝑁𝑈))
173, 10lsmless2x 19542 . . . 4 (((𝑊 ∈ LMod ∧ (𝑁𝑇) ⊆ 𝑉 ∧ (𝑁𝑈) ⊆ 𝑉) ∧ 𝑈 ⊆ (𝑁𝑈)) → ((𝑁𝑇) 𝑈) ⊆ ((𝑁𝑇) (𝑁𝑈)))
181, 6, 14, 16, 17syl31anc 1375 . . 3 (𝜑 → ((𝑁𝑇) 𝑈) ⊆ ((𝑁𝑇) (𝑁𝑈)))
1912, 18sstrd 3948 . 2 (𝜑 → (𝑇 𝑈) ⊆ ((𝑁𝑇) (𝑁𝑈)))
203, 4, 10lsmsp2 21009 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) (𝑁𝑈)) = (𝑁‘(𝑇𝑈)))
211, 2, 7, 20syl3anc 1373 . 2 (𝜑 → ((𝑁𝑇) (𝑁𝑈)) = (𝑁‘(𝑇𝑈)))
2219, 21sseqtrd 3974 1 (𝜑 → (𝑇 𝑈) ⊆ (𝑁‘(𝑇𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3903  wss 3905  cfv 6486  (class class class)co 7353  Basecbs 17138  LSSumclsm 19531  LModclmod 20781  LSpanclspn 20892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853  df-lsp 20893
This theorem is referenced by:  djhsumss  41389
  Copyright terms: Public domain W3C validator