MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel3 Structured version   Visualization version   GIF version

Theorem lspsnel3 20835
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 31329 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsnss.s 𝑆 = (LSubSpβ€˜π‘Š)
lspsnss.n 𝑁 = (LSpanβ€˜π‘Š)
lspsnel3.w (πœ‘ β†’ π‘Š ∈ LMod)
lspsnel3.u (πœ‘ β†’ π‘ˆ ∈ 𝑆)
lspsnel3.x (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
lspsnel3.y (πœ‘ β†’ π‘Œ ∈ (π‘β€˜{𝑋}))
Assertion
Ref Expression
lspsnel3 (πœ‘ β†’ π‘Œ ∈ π‘ˆ)

Proof of Theorem lspsnel3
StepHypRef Expression
1 lspsnel3.w . . 3 (πœ‘ β†’ π‘Š ∈ LMod)
2 lspsnel3.u . . 3 (πœ‘ β†’ π‘ˆ ∈ 𝑆)
3 lspsnel3.x . . 3 (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
4 lspsnss.s . . . 4 𝑆 = (LSubSpβ€˜π‘Š)
5 lspsnss.n . . . 4 𝑁 = (LSpanβ€˜π‘Š)
64, 5lspsnss 20834 . . 3 ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆 ∧ 𝑋 ∈ π‘ˆ) β†’ (π‘β€˜{𝑋}) βŠ† π‘ˆ)
71, 2, 3, 6syl3anc 1368 . 2 (πœ‘ β†’ (π‘β€˜{𝑋}) βŠ† π‘ˆ)
8 lspsnel3.y . 2 (πœ‘ β†’ π‘Œ ∈ (π‘β€˜{𝑋}))
97, 8sseldd 3978 1 (πœ‘ β†’ π‘Œ ∈ π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098   βŠ† wss 3943  {csn 4623  β€˜cfv 6536  LModclmod 20703  LSubSpclss 20775  LSpanclspn 20815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-0g 17393  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-grp 18863  df-lmod 20705  df-lss 20776  df-lsp 20816
This theorem is referenced by:  lspsnel4  20972
  Copyright terms: Public domain W3C validator