Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnel3 | Structured version Visualization version GIF version |
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 30222 analog.) (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lspsnss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel3.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lspsnel3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) |
Ref | Expression |
---|---|
lspsnel3 | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel3.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspsnel3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
3 | lspsnel3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
4 | lspsnss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | lspsnss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | 4, 5 | lspsnss 20358 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
7 | 1, 2, 3, 6 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
8 | lspsnel3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) | |
9 | 7, 8 | sseldd 3933 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 {csn 4573 ‘cfv 6479 LModclmod 20229 LSubSpclss 20299 LSpanclspn 20339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-0g 17249 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-lmod 20231 df-lss 20300 df-lsp 20340 |
This theorem is referenced by: lspsnel4 20492 |
Copyright terms: Public domain | W3C validator |