Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnel3 | Structured version Visualization version GIF version |
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 29934 analog.) (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lspsnss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel3.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel3.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lspsnel3.y | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) |
Ref | Expression |
---|---|
lspsnel3 | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel3.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspsnel3.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
3 | lspsnel3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
4 | lspsnss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | lspsnss.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
6 | 4, 5 | lspsnss 20252 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈) |
7 | 1, 2, 3, 6 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
8 | lspsnel3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) | |
9 | 7, 8 | sseldd 3922 | 1 ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {csn 4561 ‘cfv 6433 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-lmod 20125 df-lss 20194 df-lsp 20234 |
This theorem is referenced by: lspsnel4 20386 |
Copyright terms: Public domain | W3C validator |