MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel3 Structured version   Visualization version   GIF version

Theorem lspsnel3 20601
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 30820 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsnss.s 𝑆 = (LSubSpβ€˜π‘Š)
lspsnss.n 𝑁 = (LSpanβ€˜π‘Š)
lspsnel3.w (πœ‘ β†’ π‘Š ∈ LMod)
lspsnel3.u (πœ‘ β†’ π‘ˆ ∈ 𝑆)
lspsnel3.x (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
lspsnel3.y (πœ‘ β†’ π‘Œ ∈ (π‘β€˜{𝑋}))
Assertion
Ref Expression
lspsnel3 (πœ‘ β†’ π‘Œ ∈ π‘ˆ)

Proof of Theorem lspsnel3
StepHypRef Expression
1 lspsnel3.w . . 3 (πœ‘ β†’ π‘Š ∈ LMod)
2 lspsnel3.u . . 3 (πœ‘ β†’ π‘ˆ ∈ 𝑆)
3 lspsnel3.x . . 3 (πœ‘ β†’ 𝑋 ∈ π‘ˆ)
4 lspsnss.s . . . 4 𝑆 = (LSubSpβ€˜π‘Š)
5 lspsnss.n . . . 4 𝑁 = (LSpanβ€˜π‘Š)
64, 5lspsnss 20600 . . 3 ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆 ∧ 𝑋 ∈ π‘ˆ) β†’ (π‘β€˜{𝑋}) βŠ† π‘ˆ)
71, 2, 3, 6syl3anc 1371 . 2 (πœ‘ β†’ (π‘β€˜{𝑋}) βŠ† π‘ˆ)
8 lspsnel3.y . 2 (πœ‘ β†’ π‘Œ ∈ (π‘β€˜{𝑋}))
97, 8sseldd 3983 1 (πœ‘ β†’ π‘Œ ∈ π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  {csn 4628  β€˜cfv 6543  LModclmod 20470  LSubSpclss 20541  LSpanclspn 20581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-lmod 20472  df-lss 20542  df-lsp 20582
This theorem is referenced by:  lspsnel4  20736
  Copyright terms: Public domain W3C validator