MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel3 Structured version   Visualization version   GIF version

Theorem lspsnel3 20168
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 29835 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsnss.s 𝑆 = (LSubSp‘𝑊)
lspsnss.n 𝑁 = (LSpan‘𝑊)
lspsnel3.w (𝜑𝑊 ∈ LMod)
lspsnel3.u (𝜑𝑈𝑆)
lspsnel3.x (𝜑𝑋𝑈)
lspsnel3.y (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Assertion
Ref Expression
lspsnel3 (𝜑𝑌𝑈)

Proof of Theorem lspsnel3
StepHypRef Expression
1 lspsnel3.w . . 3 (𝜑𝑊 ∈ LMod)
2 lspsnel3.u . . 3 (𝜑𝑈𝑆)
3 lspsnel3.x . . 3 (𝜑𝑋𝑈)
4 lspsnss.s . . . 4 𝑆 = (LSubSp‘𝑊)
5 lspsnss.n . . . 4 𝑁 = (LSpan‘𝑊)
64, 5lspsnss 20167 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
71, 2, 3, 6syl3anc 1369 . 2 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
8 lspsnel3.y . 2 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
97, 8sseldd 3918 1 (𝜑𝑌𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  {csn 4558  cfv 6418  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-lmod 20040  df-lss 20109  df-lsp 20149
This theorem is referenced by:  lspsnel4  20301
  Copyright terms: Public domain W3C validator