![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel3 | Structured version Visualization version GIF version |
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn3 31329 analog.) (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lspsnss.s | β’ π = (LSubSpβπ) |
lspsnss.n | β’ π = (LSpanβπ) |
lspsnel3.w | β’ (π β π β LMod) |
lspsnel3.u | β’ (π β π β π) |
lspsnel3.x | β’ (π β π β π) |
lspsnel3.y | β’ (π β π β (πβ{π})) |
Ref | Expression |
---|---|
lspsnel3 | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel3.w | . . 3 β’ (π β π β LMod) | |
2 | lspsnel3.u | . . 3 β’ (π β π β π) | |
3 | lspsnel3.x | . . 3 β’ (π β π β π) | |
4 | lspsnss.s | . . . 4 β’ π = (LSubSpβπ) | |
5 | lspsnss.n | . . . 4 β’ π = (LSpanβπ) | |
6 | 4, 5 | lspsnss 20834 | . . 3 β’ ((π β LMod β§ π β π β§ π β π) β (πβ{π}) β π) |
7 | 1, 2, 3, 6 | syl3anc 1368 | . 2 β’ (π β (πβ{π}) β π) |
8 | lspsnel3.y | . 2 β’ (π β π β (πβ{π})) | |
9 | 7, 8 | sseldd 3978 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wss 3943 {csn 4623 βcfv 6536 LModclmod 20703 LSubSpclss 20775 LSpanclspn 20815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-lmod 20705 df-lss 20776 df-lsp 20816 |
This theorem is referenced by: lspsnel4 20972 |
Copyright terms: Public domain | W3C validator |