![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel4 | Structured version Visualization version GIF version |
Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn4 31460 analog.) (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lspsnel4.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnel4.o | ⊢ 0 = (0g‘𝑊) |
lspsnel4.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnel4.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel4.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspsnel4.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel4.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspsnel4.y | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) |
lspsnel4.z | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
Ref | Expression |
---|---|
lspsnel4 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel4.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | lspsnel4.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lspsnel4.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lveclmod 21008 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | 5 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) |
7 | lspsnel4.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 7 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
9 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
10 | lspsnel4.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) | |
11 | 10 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ (𝑁‘{𝑋})) |
12 | 1, 2, 6, 8, 9, 11 | lspsnel3 20892 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) |
13 | 5 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑊 ∈ LMod) |
14 | 7 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑈 ∈ 𝑆) |
15 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
16 | lspsnel4.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
17 | lspsnel4.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
18 | 17, 2 | lspsnid 20894 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
19 | 5, 16, 18 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋})) |
20 | lspsnel4.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
21 | lspsnel4.z | . . . . . 6 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
22 | 17, 20, 2, 3, 16, 10, 21 | lspsneleq 21020 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋})) |
23 | 19, 22 | eleqtrrd 2828 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌})) |
24 | 23 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (𝑁‘{𝑌})) |
25 | 1, 2, 13, 14, 15, 24 | lspsnel3 20892 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑈) |
26 | 12, 25 | impbida 799 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 {csn 4630 ‘cfv 6549 Basecbs 17188 0gc0g 17429 LModclmod 20760 LSubSpclss 20832 LSpanclspn 20872 LVecclvec 21004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-ress 17218 df-plusg 17254 df-mulr 17255 df-0g 17431 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-grp 18906 df-minusg 18907 df-sbg 18908 df-cmn 19754 df-abl 19755 df-mgp 20092 df-rng 20110 df-ur 20139 df-ring 20192 df-oppr 20290 df-dvdsr 20313 df-unit 20314 df-invr 20344 df-drng 20643 df-lmod 20762 df-lss 20833 df-lsp 20873 df-lvec 21005 |
This theorem is referenced by: lshpdisj 38591 |
Copyright terms: Public domain | W3C validator |