Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnsubn0 | Structured version Visualization version GIF version |
Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.) |
Ref | Expression |
---|---|
lspsnsubn0.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnsubn0.o | ⊢ 0 = (0g‘𝑊) |
lspsnsubn0.m | ⊢ − = (-g‘𝑊) |
lspsnsubn0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnsubn0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspsnsubn0.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspsnsubn0.e | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lspsnsubn0 | ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnsubn0.e | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
2 | lspsnsubn0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lspsnsubn0.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | lspsnsubn0.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
5 | lspsnsubn0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
6 | lspsnsubn0.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
7 | lspsnsubn0.m | . . . . . 6 ⊢ − = (-g‘𝑊) | |
8 | 5, 6, 7 | lmodsubeq0 19958 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
9 | 2, 3, 4, 8 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
10 | sneq 4551 | . . . . 5 ⊢ (𝑋 = 𝑌 → {𝑋} = {𝑌}) | |
11 | 10 | fveq2d 6721 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
12 | 9, 11 | syl6bi 256 | . . 3 ⊢ (𝜑 → ((𝑋 − 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
13 | 12 | necon3d 2961 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 − 𝑌) ≠ 0 )) |
14 | 1, 13 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 {csn 4541 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 0gc0g 16944 -gcsg 18367 LModclmod 19899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-lmod 19901 |
This theorem is referenced by: mapdpglem4N 39427 |
Copyright terms: Public domain | W3C validator |