Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnsubn0 | Structured version Visualization version GIF version |
Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.) |
Ref | Expression |
---|---|
lspsnsubn0.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnsubn0.o | ⊢ 0 = (0g‘𝑊) |
lspsnsubn0.m | ⊢ − = (-g‘𝑊) |
lspsnsubn0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnsubn0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspsnsubn0.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspsnsubn0.e | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lspsnsubn0 | ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnsubn0.e | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
2 | lspsnsubn0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lspsnsubn0.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | lspsnsubn0.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
5 | lspsnsubn0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
6 | lspsnsubn0.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
7 | lspsnsubn0.m | . . . . . 6 ⊢ − = (-g‘𝑊) | |
8 | 5, 6, 7 | lmodsubeq0 20163 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
9 | 2, 3, 4, 8 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
10 | sneq 4576 | . . . . 5 ⊢ (𝑋 = 𝑌 → {𝑋} = {𝑌}) | |
11 | 10 | fveq2d 6772 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
12 | 9, 11 | syl6bi 252 | . . 3 ⊢ (𝜑 → ((𝑋 − 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
13 | 12 | necon3d 2965 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 − 𝑌) ≠ 0 )) |
14 | 1, 13 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 {csn 4566 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 0gc0g 17131 -gcsg 18560 LModclmod 20104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-sbg 18563 df-lmod 20106 |
This theorem is referenced by: mapdpglem4N 39669 |
Copyright terms: Public domain | W3C validator |