| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsnsubn0 | Structured version Visualization version GIF version | ||
| Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| lspsnsubn0.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsnsubn0.o | ⊢ 0 = (0g‘𝑊) |
| lspsnsubn0.m | ⊢ − = (-g‘𝑊) |
| lspsnsubn0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lspsnsubn0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspsnsubn0.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspsnsubn0.e | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| lspsnsubn0 | ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnsubn0.e | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 2 | lspsnsubn0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lspsnsubn0.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | lspsnsubn0.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | lspsnsubn0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | lspsnsubn0.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 7 | lspsnsubn0.m | . . . . . 6 ⊢ − = (-g‘𝑊) | |
| 8 | 5, 6, 7 | lmodsubeq0 20856 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
| 9 | 2, 3, 4, 8 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
| 10 | sneq 4585 | . . . . 5 ⊢ (𝑋 = 𝑌 → {𝑋} = {𝑌}) | |
| 11 | 10 | fveq2d 6832 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| 12 | 9, 11 | biimtrdi 253 | . . 3 ⊢ (𝜑 → ((𝑋 − 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| 13 | 12 | necon3d 2950 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 − 𝑌) ≠ 0 )) |
| 14 | 1, 13 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {csn 4575 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 0gc0g 17345 -gcsg 18850 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-lmod 20797 |
| This theorem is referenced by: mapdpglem4N 41796 |
| Copyright terms: Public domain | W3C validator |