MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnsubn0 Structured version   Visualization version   GIF version

Theorem lspsnsubn0 21078
Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.)
Hypotheses
Ref Expression
lspsnsubn0.v 𝑉 = (Base‘𝑊)
lspsnsubn0.o 0 = (0g𝑊)
lspsnsubn0.m = (-g𝑊)
lspsnsubn0.w (𝜑𝑊 ∈ LMod)
lspsnsubn0.x (𝜑𝑋𝑉)
lspsnsubn0.y (𝜑𝑌𝑉)
lspsnsubn0.e (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lspsnsubn0 (𝜑 → (𝑋 𝑌) ≠ 0 )

Proof of Theorem lspsnsubn0
StepHypRef Expression
1 lspsnsubn0.e . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2 lspsnsubn0.w . . . . 5 (𝜑𝑊 ∈ LMod)
3 lspsnsubn0.x . . . . 5 (𝜑𝑋𝑉)
4 lspsnsubn0.y . . . . 5 (𝜑𝑌𝑉)
5 lspsnsubn0.v . . . . . 6 𝑉 = (Base‘𝑊)
6 lspsnsubn0.o . . . . . 6 0 = (0g𝑊)
7 lspsnsubn0.m . . . . . 6 = (-g𝑊)
85, 6, 7lmodsubeq0 20855 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 𝑌) = 0𝑋 = 𝑌))
92, 3, 4, 8syl3anc 1373 . . . 4 (𝜑 → ((𝑋 𝑌) = 0𝑋 = 𝑌))
10 sneq 4586 . . . . 5 (𝑋 = 𝑌 → {𝑋} = {𝑌})
1110fveq2d 6826 . . . 4 (𝑋 = 𝑌 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
129, 11biimtrdi 253 . . 3 (𝜑 → ((𝑋 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
1312necon3d 2949 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 𝑌) ≠ 0 ))
141, 13mpd 15 1 (𝜑 → (𝑋 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wne 2928  {csn 4576  cfv 6481  (class class class)co 7346  Basecbs 17120  0gc0g 17343  -gcsg 18848  LModclmod 20794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-lmod 20796
This theorem is referenced by:  mapdpglem4N  41721
  Copyright terms: Public domain W3C validator