MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnsubn0 Structured version   Visualization version   GIF version

Theorem lspsnsubn0 21065
Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.)
Hypotheses
Ref Expression
lspsnsubn0.v 𝑉 = (Base‘𝑊)
lspsnsubn0.o 0 = (0g𝑊)
lspsnsubn0.m = (-g𝑊)
lspsnsubn0.w (𝜑𝑊 ∈ LMod)
lspsnsubn0.x (𝜑𝑋𝑉)
lspsnsubn0.y (𝜑𝑌𝑉)
lspsnsubn0.e (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lspsnsubn0 (𝜑 → (𝑋 𝑌) ≠ 0 )

Proof of Theorem lspsnsubn0
StepHypRef Expression
1 lspsnsubn0.e . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2 lspsnsubn0.w . . . . 5 (𝜑𝑊 ∈ LMod)
3 lspsnsubn0.x . . . . 5 (𝜑𝑋𝑉)
4 lspsnsubn0.y . . . . 5 (𝜑𝑌𝑉)
5 lspsnsubn0.v . . . . . 6 𝑉 = (Base‘𝑊)
6 lspsnsubn0.o . . . . . 6 0 = (0g𝑊)
7 lspsnsubn0.m . . . . . 6 = (-g𝑊)
85, 6, 7lmodsubeq0 20842 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 𝑌) = 0𝑋 = 𝑌))
92, 3, 4, 8syl3anc 1373 . . . 4 (𝜑 → ((𝑋 𝑌) = 0𝑋 = 𝑌))
10 sneq 4589 . . . . 5 (𝑋 = 𝑌 → {𝑋} = {𝑌})
1110fveq2d 6830 . . . 4 (𝑋 = 𝑌 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
129, 11biimtrdi 253 . . 3 (𝜑 → ((𝑋 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
1312necon3d 2946 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 𝑌) ≠ 0 ))
141, 13mpd 15 1 (𝜑 → (𝑋 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17138  0gc0g 17361  -gcsg 18832  LModclmod 20781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-lmod 20783
This theorem is referenced by:  mapdpglem4N  41655
  Copyright terms: Public domain W3C validator