| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsnsubn0 | Structured version Visualization version GIF version | ||
| Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| lspsnsubn0.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsnsubn0.o | ⊢ 0 = (0g‘𝑊) |
| lspsnsubn0.m | ⊢ − = (-g‘𝑊) |
| lspsnsubn0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lspsnsubn0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspsnsubn0.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspsnsubn0.e | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| lspsnsubn0 | ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnsubn0.e | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 2 | lspsnsubn0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lspsnsubn0.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | lspsnsubn0.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | lspsnsubn0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | lspsnsubn0.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 7 | lspsnsubn0.m | . . . . . 6 ⊢ − = (-g‘𝑊) | |
| 8 | 5, 6, 7 | lmodsubeq0 20827 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
| 9 | 2, 3, 4, 8 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
| 10 | sneq 4599 | . . . . 5 ⊢ (𝑋 = 𝑌 → {𝑋} = {𝑌}) | |
| 11 | 10 | fveq2d 6862 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| 12 | 9, 11 | biimtrdi 253 | . . 3 ⊢ (𝜑 → ((𝑋 − 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| 13 | 12 | necon3d 2946 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 − 𝑌) ≠ 0 )) |
| 14 | 1, 13 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4589 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 0gc0g 17402 -gcsg 18867 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-lmod 20768 |
| This theorem is referenced by: mapdpglem4N 41670 |
| Copyright terms: Public domain | W3C validator |