MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnsubn0 Structured version   Visualization version   GIF version

Theorem lspsnsubn0 21165
Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.)
Hypotheses
Ref Expression
lspsnsubn0.v 𝑉 = (Base‘𝑊)
lspsnsubn0.o 0 = (0g𝑊)
lspsnsubn0.m = (-g𝑊)
lspsnsubn0.w (𝜑𝑊 ∈ LMod)
lspsnsubn0.x (𝜑𝑋𝑉)
lspsnsubn0.y (𝜑𝑌𝑉)
lspsnsubn0.e (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lspsnsubn0 (𝜑 → (𝑋 𝑌) ≠ 0 )

Proof of Theorem lspsnsubn0
StepHypRef Expression
1 lspsnsubn0.e . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2 lspsnsubn0.w . . . . 5 (𝜑𝑊 ∈ LMod)
3 lspsnsubn0.x . . . . 5 (𝜑𝑋𝑉)
4 lspsnsubn0.y . . . . 5 (𝜑𝑌𝑉)
5 lspsnsubn0.v . . . . . 6 𝑉 = (Base‘𝑊)
6 lspsnsubn0.o . . . . . 6 0 = (0g𝑊)
7 lspsnsubn0.m . . . . . 6 = (-g𝑊)
85, 6, 7lmodsubeq0 20941 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 𝑌) = 0𝑋 = 𝑌))
92, 3, 4, 8syl3anc 1371 . . . 4 (𝜑 → ((𝑋 𝑌) = 0𝑋 = 𝑌))
10 sneq 4658 . . . . 5 (𝑋 = 𝑌 → {𝑋} = {𝑌})
1110fveq2d 6924 . . . 4 (𝑋 = 𝑌 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
129, 11biimtrdi 253 . . 3 (𝜑 → ((𝑋 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
1312necon3d 2967 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 𝑌) ≠ 0 ))
141, 13mpd 15 1 (𝜑 → (𝑋 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wne 2946  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  0gc0g 17499  -gcsg 18975  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-lmod 20882
This theorem is referenced by:  mapdpglem4N  41633
  Copyright terms: Public domain W3C validator