| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsnsubn0 | Structured version Visualization version GIF version | ||
| Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| lspsnsubn0.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsnsubn0.o | ⊢ 0 = (0g‘𝑊) |
| lspsnsubn0.m | ⊢ − = (-g‘𝑊) |
| lspsnsubn0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lspsnsubn0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspsnsubn0.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspsnsubn0.e | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| lspsnsubn0 | ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnsubn0.e | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 2 | lspsnsubn0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lspsnsubn0.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | lspsnsubn0.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | lspsnsubn0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | lspsnsubn0.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 7 | lspsnsubn0.m | . . . . . 6 ⊢ − = (-g‘𝑊) | |
| 8 | 5, 6, 7 | lmodsubeq0 20919 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
| 9 | 2, 3, 4, 8 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑋 − 𝑌) = 0 ↔ 𝑋 = 𝑌)) |
| 10 | sneq 4636 | . . . . 5 ⊢ (𝑋 = 𝑌 → {𝑋} = {𝑌}) | |
| 11 | 10 | fveq2d 6910 | . . . 4 ⊢ (𝑋 = 𝑌 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| 12 | 9, 11 | biimtrdi 253 | . . 3 ⊢ (𝜑 → ((𝑋 − 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| 13 | 12 | necon3d 2961 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 − 𝑌) ≠ 0 )) |
| 14 | 1, 13 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {csn 4626 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 0gc0g 17484 -gcsg 18953 LModclmod 20858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-lmod 20860 |
| This theorem is referenced by: mapdpglem4N 41678 |
| Copyright terms: Public domain | W3C validator |