MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubeq0 Structured version   Visualization version   GIF version

Theorem lmodsubeq0 20854
Description: If the difference between two vectors is zero, they are equal. (hvsubeq0 31048 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodsubeq0.v 𝑉 = (Base‘𝑊)
lmodsubeq0.o 0 = (0g𝑊)
lmodsubeq0.m = (-g𝑊)
Assertion
Ref Expression
lmodsubeq0 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) = 0𝐴 = 𝐵))

Proof of Theorem lmodsubeq0
StepHypRef Expression
1 lmodgrp 20800 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodsubeq0.v . . 3 𝑉 = (Base‘𝑊)
3 lmodsubeq0.o . . 3 0 = (0g𝑊)
4 lmodsubeq0.m . . 3 = (-g𝑊)
52, 3, 4grpsubeq0 18939 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) = 0𝐴 = 𝐵))
61, 5syl3an1 1163 1 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) = 0𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  0gc0g 17343  Grpcgrp 18846  -gcsg 18848  LModclmod 20793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-lmod 20795
This theorem is referenced by:  lvecvscan  21048  lvecvscan2  21049  lspsnsubn0  21077  ttgbtwnid  28862  lclkrlem2p  41569  lcfrlem31  41620  hdmaprnlem9N  41904
  Copyright terms: Public domain W3C validator