MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubeq0 Structured version   Visualization version   GIF version

Theorem lmodsubeq0 20182
Description: If the difference between two vectors is zero, they are equal. (hvsubeq0 29430 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodsubeq0.v 𝑉 = (Base‘𝑊)
lmodsubeq0.o 0 = (0g𝑊)
lmodsubeq0.m = (-g𝑊)
Assertion
Ref Expression
lmodsubeq0 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) = 0𝐴 = 𝐵))

Proof of Theorem lmodsubeq0
StepHypRef Expression
1 lmodgrp 20130 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodsubeq0.v . . 3 𝑉 = (Base‘𝑊)
3 lmodsubeq0.o . . 3 0 = (0g𝑊)
4 lmodsubeq0.m . . 3 = (-g𝑊)
52, 3, 4grpsubeq0 18661 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) = 0𝐴 = 𝐵))
61, 5syl3an1 1162 1 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) = 0𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  0gc0g 17150  Grpcgrp 18577  -gcsg 18579  LModclmod 20123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-lmod 20125
This theorem is referenced by:  lvecvscan  20373  lvecvscan2  20374  lspsnsubn0  20402  ttgbtwnid  27251  lclkrlem2p  39536  lcfrlem31  39587  hdmaprnlem9N  39871
  Copyright terms: Public domain W3C validator