| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecindp2 | Structured version Visualization version GIF version | ||
| Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| lvecindp2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lvecindp2.p | ⊢ + = (+g‘𝑊) |
| lvecindp2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lvecindp2.k | ⊢ 𝐾 = (Base‘𝐹) |
| lvecindp2.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lvecindp2.o | ⊢ 0 = (0g‘𝑊) |
| lvecindp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lvecindp2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecindp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| lvecindp2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| lvecindp2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lvecindp2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lvecindp2.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| lvecindp2.d | ⊢ (𝜑 → 𝐷 ∈ 𝐾) |
| lvecindp2.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| lvecindp2.e | ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) |
| Ref | Expression |
|---|---|
| lvecindp2 | ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecindp2.e | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) | |
| 2 | lvecindp2.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 3 | lvecindp2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
| 5 | lvecindp2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 6 | lveclmod 21041 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 8 | lvecindp2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 9 | 8 | eldifad 3914 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 10 | lvecindp2.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | lvecindp2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 12 | 10, 11 | lspsnsubg 20914 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 13 | 7, 9, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 14 | lvecindp2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 15 | 14 | eldifad 3914 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 16 | 10, 11 | lspsnsubg 20914 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 17 | 7, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 18 | lvecindp2.q | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 19 | 10, 3, 11, 5, 9, 15, 18 | lspdisj2 21065 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 }) |
| 20 | lmodabl 20843 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 21 | 7, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 22 | 4, 21, 13, 17 | ablcntzd 19770 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑌}))) |
| 23 | lvecindp2.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 24 | lvecindp2.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 25 | lvecindp2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 26 | lvecindp2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 27 | 10, 23, 24, 25, 11, 7, 26, 9 | ellspsni 20935 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋})) |
| 28 | lvecindp2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 29 | 10, 23, 24, 25, 11, 7, 28, 9 | ellspsni 20935 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝑋) ∈ (𝑁‘{𝑋})) |
| 30 | lvecindp2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 31 | 10, 23, 24, 25, 11, 7, 30, 15 | ellspsni 20935 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌})) |
| 32 | lvecindp2.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝐾) | |
| 33 | 10, 23, 24, 25, 11, 7, 32, 15 | ellspsni 20935 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝑌) ∈ (𝑁‘{𝑌})) |
| 34 | 2, 3, 4, 13, 17, 19, 22, 27, 29, 31, 33 | subgdisjb 19606 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)) ↔ ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)))) |
| 35 | 1, 34 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌))) |
| 36 | eldifsni 4742 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
| 37 | 8, 36 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| 38 | 10, 23, 24, 25, 3, 5, 26, 28, 9, 37 | lvecvscan2 21050 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ↔ 𝐴 = 𝐶)) |
| 39 | eldifsni 4742 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
| 40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| 41 | 10, 23, 24, 25, 3, 5, 30, 32, 15, 40 | lvecvscan2 21050 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝑌) = (𝐷 · 𝑌) ↔ 𝐵 = 𝐷)) |
| 42 | 38, 41 | anbi12d 632 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 43 | 35, 42 | mpbid 232 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {csn 4576 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 SubGrpcsubg 19033 Cntzccntz 19228 Abelcabl 19694 LModclmod 20794 LSpanclspn 20905 LVecclvec 21037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19230 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-drng 20647 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lvec 21038 |
| This theorem is referenced by: mapdpglem30 41747 baerlem3lem1 41752 baerlem5alem1 41753 hdmap14lem9 41921 |
| Copyright terms: Public domain | W3C validator |