MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecindp2 Structured version   Visualization version   GIF version

Theorem lvecindp2 20745
Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lvecindp2.v 𝑉 = (Base‘𝑊)
lvecindp2.p + = (+g𝑊)
lvecindp2.f 𝐹 = (Scalar‘𝑊)
lvecindp2.k 𝐾 = (Base‘𝐹)
lvecindp2.t · = ( ·𝑠𝑊)
lvecindp2.o 0 = (0g𝑊)
lvecindp2.n 𝑁 = (LSpan‘𝑊)
lvecindp2.w (𝜑𝑊 ∈ LVec)
lvecindp2.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lvecindp2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lvecindp2.a (𝜑𝐴𝐾)
lvecindp2.b (𝜑𝐵𝐾)
lvecindp2.c (𝜑𝐶𝐾)
lvecindp2.d (𝜑𝐷𝐾)
lvecindp2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lvecindp2.e (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))
Assertion
Ref Expression
lvecindp2 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem lvecindp2
StepHypRef Expression
1 lvecindp2.e . . 3 (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))
2 lvecindp2.p . . . 4 + = (+g𝑊)
3 lvecindp2.o . . . 4 0 = (0g𝑊)
4 eqid 2733 . . . 4 (Cntz‘𝑊) = (Cntz‘𝑊)
5 lvecindp2.w . . . . . 6 (𝜑𝑊 ∈ LVec)
6 lveclmod 20710 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
8 lvecindp2.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
98eldifad 3960 . . . . 5 (𝜑𝑋𝑉)
10 lvecindp2.v . . . . . 6 𝑉 = (Base‘𝑊)
11 lvecindp2.n . . . . . 6 𝑁 = (LSpan‘𝑊)
1210, 11lspsnsubg 20584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
137, 9, 12syl2anc 585 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
14 lvecindp2.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1514eldifad 3960 . . . . 5 (𝜑𝑌𝑉)
1610, 11lspsnsubg 20584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
177, 15, 16syl2anc 585 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
18 lvecindp2.q . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
1910, 3, 11, 5, 9, 15, 18lspdisj2 20733 . . . 4 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
20 lmodabl 20512 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
217, 20syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
224, 21, 13, 17ablcntzd 19720 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑌})))
23 lvecindp2.t . . . . 5 · = ( ·𝑠𝑊)
24 lvecindp2.f . . . . 5 𝐹 = (Scalar‘𝑊)
25 lvecindp2.k . . . . 5 𝐾 = (Base‘𝐹)
26 lvecindp2.a . . . . 5 (𝜑𝐴𝐾)
2710, 23, 24, 25, 11, 7, 26, 9lspsneli 20605 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
28 lvecindp2.c . . . . 5 (𝜑𝐶𝐾)
2910, 23, 24, 25, 11, 7, 28, 9lspsneli 20605 . . . 4 (𝜑 → (𝐶 · 𝑋) ∈ (𝑁‘{𝑋}))
30 lvecindp2.b . . . . 5 (𝜑𝐵𝐾)
3110, 23, 24, 25, 11, 7, 30, 15lspsneli 20605 . . . 4 (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌}))
32 lvecindp2.d . . . . 5 (𝜑𝐷𝐾)
3310, 23, 24, 25, 11, 7, 32, 15lspsneli 20605 . . . 4 (𝜑 → (𝐷 · 𝑌) ∈ (𝑁‘{𝑌}))
342, 3, 4, 13, 17, 19, 22, 27, 29, 31, 33subgdisjb 19556 . . 3 (𝜑 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)) ↔ ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌))))
351, 34mpbid 231 . 2 (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)))
36 eldifsni 4793 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
378, 36syl 17 . . . 4 (𝜑𝑋0 )
3810, 23, 24, 25, 3, 5, 26, 28, 9, 37lvecvscan2 20718 . . 3 (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ↔ 𝐴 = 𝐶))
39 eldifsni 4793 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
4014, 39syl 17 . . . 4 (𝜑𝑌0 )
4110, 23, 24, 25, 3, 5, 30, 32, 15, 40lvecvscan2 20718 . . 3 (𝜑 → ((𝐵 · 𝑌) = (𝐷 · 𝑌) ↔ 𝐵 = 𝐷))
4238, 41anbi12d 632 . 2 (𝜑 → (((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
4335, 42mpbid 231 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  cdif 3945  {csn 4628  cfv 6541  (class class class)co 7406  Basecbs 17141  +gcplusg 17194  Scalarcsca 17197   ·𝑠 cvsca 17198  0gc0g 17382  SubGrpcsubg 18995  Cntzccntz 19174  Abelcabl 19644  LModclmod 20464  LSpanclspn 20575  LVecclvec 20706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-0g 17384  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-grp 18819  df-minusg 18820  df-sbg 18821  df-subg 18998  df-cntz 19176  df-cmn 19645  df-abl 19646  df-mgp 19983  df-ur 20000  df-ring 20052  df-oppr 20143  df-dvdsr 20164  df-unit 20165  df-invr 20195  df-drng 20310  df-lmod 20466  df-lss 20536  df-lsp 20576  df-lvec 20707
This theorem is referenced by:  mapdpglem30  40562  baerlem3lem1  40567  baerlem5alem1  40568  hdmap14lem9  40736
  Copyright terms: Public domain W3C validator