Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lvecindp2 | Structured version Visualization version GIF version |
Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.) |
Ref | Expression |
---|---|
lvecindp2.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecindp2.p | ⊢ + = (+g‘𝑊) |
lvecindp2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecindp2.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecindp2.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecindp2.o | ⊢ 0 = (0g‘𝑊) |
lvecindp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lvecindp2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecindp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lvecindp2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lvecindp2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lvecindp2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lvecindp2.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
lvecindp2.d | ⊢ (𝜑 → 𝐷 ∈ 𝐾) |
lvecindp2.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lvecindp2.e | ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) |
Ref | Expression |
---|---|
lvecindp2 | ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecindp2.e | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) | |
2 | lvecindp2.p | . . . 4 ⊢ + = (+g‘𝑊) | |
3 | lvecindp2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
4 | eqid 2738 | . . . 4 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
5 | lvecindp2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | lveclmod 19997 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
8 | lvecindp2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
9 | 8 | eldifad 3855 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
10 | lvecindp2.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
11 | lvecindp2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
12 | 10, 11 | lspsnsubg 19871 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
13 | 7, 9, 12 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
14 | lvecindp2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
15 | 14 | eldifad 3855 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
16 | 10, 11 | lspsnsubg 19871 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
17 | 7, 15, 16 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
18 | lvecindp2.q | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
19 | 10, 3, 11, 5, 9, 15, 18 | lspdisj2 20018 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 }) |
20 | lmodabl 19800 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
21 | 7, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
22 | 4, 21, 13, 17 | ablcntzd 19096 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑌}))) |
23 | lvecindp2.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
24 | lvecindp2.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
25 | lvecindp2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
26 | lvecindp2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
27 | 10, 23, 24, 25, 11, 7, 26, 9 | lspsneli 19892 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋})) |
28 | lvecindp2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
29 | 10, 23, 24, 25, 11, 7, 28, 9 | lspsneli 19892 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝑋) ∈ (𝑁‘{𝑋})) |
30 | lvecindp2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
31 | 10, 23, 24, 25, 11, 7, 30, 15 | lspsneli 19892 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌})) |
32 | lvecindp2.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝐾) | |
33 | 10, 23, 24, 25, 11, 7, 32, 15 | lspsneli 19892 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝑌) ∈ (𝑁‘{𝑌})) |
34 | 2, 3, 4, 13, 17, 19, 22, 27, 29, 31, 33 | subgdisjb 18937 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)) ↔ ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)))) |
35 | 1, 34 | mpbid 235 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌))) |
36 | eldifsni 4678 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
37 | 8, 36 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
38 | 10, 23, 24, 25, 3, 5, 26, 28, 9, 37 | lvecvscan2 20003 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ↔ 𝐴 = 𝐶)) |
39 | eldifsni 4678 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
41 | 10, 23, 24, 25, 3, 5, 30, 32, 15, 40 | lvecvscan2 20003 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝑌) = (𝐷 · 𝑌) ↔ 𝐵 = 𝐷)) |
42 | 38, 41 | anbi12d 634 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
43 | 35, 42 | mpbid 235 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∖ cdif 3840 {csn 4516 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 +gcplusg 16668 Scalarcsca 16671 ·𝑠 cvsca 16672 0gc0g 16816 SubGrpcsubg 18391 Cntzccntz 18563 Abelcabl 19025 LModclmod 19753 LSpanclspn 19862 LVecclvec 19993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-tpos 7921 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-grp 18222 df-minusg 18223 df-sbg 18224 df-subg 18394 df-cntz 18565 df-cmn 19026 df-abl 19027 df-mgp 19359 df-ur 19371 df-ring 19418 df-oppr 19495 df-dvdsr 19513 df-unit 19514 df-invr 19544 df-drng 19623 df-lmod 19755 df-lss 19823 df-lsp 19863 df-lvec 19994 |
This theorem is referenced by: mapdpglem30 39339 baerlem3lem1 39344 baerlem5alem1 39345 hdmap14lem9 39513 |
Copyright terms: Public domain | W3C validator |