Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lvecindp2 | Structured version Visualization version GIF version |
Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.) |
Ref | Expression |
---|---|
lvecindp2.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecindp2.p | ⊢ + = (+g‘𝑊) |
lvecindp2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecindp2.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecindp2.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecindp2.o | ⊢ 0 = (0g‘𝑊) |
lvecindp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lvecindp2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecindp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lvecindp2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lvecindp2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lvecindp2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lvecindp2.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
lvecindp2.d | ⊢ (𝜑 → 𝐷 ∈ 𝐾) |
lvecindp2.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lvecindp2.e | ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) |
Ref | Expression |
---|---|
lvecindp2 | ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecindp2.e | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) | |
2 | lvecindp2.p | . . . 4 ⊢ + = (+g‘𝑊) | |
3 | lvecindp2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
4 | eqid 2738 | . . . 4 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
5 | lvecindp2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | lveclmod 20283 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
8 | lvecindp2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
9 | 8 | eldifad 3895 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
10 | lvecindp2.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
11 | lvecindp2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
12 | 10, 11 | lspsnsubg 20157 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
13 | 7, 9, 12 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
14 | lvecindp2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
15 | 14 | eldifad 3895 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
16 | 10, 11 | lspsnsubg 20157 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
17 | 7, 15, 16 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
18 | lvecindp2.q | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
19 | 10, 3, 11, 5, 9, 15, 18 | lspdisj2 20304 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 }) |
20 | lmodabl 20085 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
21 | 7, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
22 | 4, 21, 13, 17 | ablcntzd 19373 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑌}))) |
23 | lvecindp2.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
24 | lvecindp2.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
25 | lvecindp2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
26 | lvecindp2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
27 | 10, 23, 24, 25, 11, 7, 26, 9 | lspsneli 20178 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋})) |
28 | lvecindp2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
29 | 10, 23, 24, 25, 11, 7, 28, 9 | lspsneli 20178 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝑋) ∈ (𝑁‘{𝑋})) |
30 | lvecindp2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
31 | 10, 23, 24, 25, 11, 7, 30, 15 | lspsneli 20178 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌})) |
32 | lvecindp2.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝐾) | |
33 | 10, 23, 24, 25, 11, 7, 32, 15 | lspsneli 20178 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝑌) ∈ (𝑁‘{𝑌})) |
34 | 2, 3, 4, 13, 17, 19, 22, 27, 29, 31, 33 | subgdisjb 19214 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)) ↔ ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)))) |
35 | 1, 34 | mpbid 231 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌))) |
36 | eldifsni 4720 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
37 | 8, 36 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
38 | 10, 23, 24, 25, 3, 5, 26, 28, 9, 37 | lvecvscan2 20289 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ↔ 𝐴 = 𝐶)) |
39 | eldifsni 4720 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
41 | 10, 23, 24, 25, 3, 5, 30, 32, 15, 40 | lvecvscan2 20289 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝑌) = (𝐷 · 𝑌) ↔ 𝐵 = 𝐷)) |
42 | 38, 41 | anbi12d 630 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
43 | 35, 42 | mpbid 231 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 SubGrpcsubg 18664 Cntzccntz 18836 Abelcabl 19302 LModclmod 20038 LSpanclspn 20148 LVecclvec 20279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 |
This theorem is referenced by: mapdpglem30 39643 baerlem3lem1 39648 baerlem5alem1 39649 hdmap14lem9 39817 |
Copyright terms: Public domain | W3C validator |