| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecindp2 | Structured version Visualization version GIF version | ||
| Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| lvecindp2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lvecindp2.p | ⊢ + = (+g‘𝑊) |
| lvecindp2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lvecindp2.k | ⊢ 𝐾 = (Base‘𝐹) |
| lvecindp2.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lvecindp2.o | ⊢ 0 = (0g‘𝑊) |
| lvecindp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lvecindp2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecindp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| lvecindp2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| lvecindp2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lvecindp2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
| lvecindp2.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| lvecindp2.d | ⊢ (𝜑 → 𝐷 ∈ 𝐾) |
| lvecindp2.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| lvecindp2.e | ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) |
| Ref | Expression |
|---|---|
| lvecindp2 | ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecindp2.e | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) | |
| 2 | lvecindp2.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 3 | lvecindp2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
| 5 | lvecindp2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 6 | lveclmod 21064 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 8 | lvecindp2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 9 | 8 | eldifad 3938 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 10 | lvecindp2.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | lvecindp2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 12 | 10, 11 | lspsnsubg 20937 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 13 | 7, 9, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 14 | lvecindp2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 15 | 14 | eldifad 3938 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 16 | 10, 11 | lspsnsubg 20937 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 17 | 7, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 18 | lvecindp2.q | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 19 | 10, 3, 11, 5, 9, 15, 18 | lspdisj2 21088 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 }) |
| 20 | lmodabl 20866 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 21 | 7, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 22 | 4, 21, 13, 17 | ablcntzd 19838 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑌}))) |
| 23 | lvecindp2.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 24 | lvecindp2.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 25 | lvecindp2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 26 | lvecindp2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 27 | 10, 23, 24, 25, 11, 7, 26, 9 | ellspsni 20958 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋})) |
| 28 | lvecindp2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 29 | 10, 23, 24, 25, 11, 7, 28, 9 | ellspsni 20958 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝑋) ∈ (𝑁‘{𝑋})) |
| 30 | lvecindp2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
| 31 | 10, 23, 24, 25, 11, 7, 30, 15 | ellspsni 20958 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌})) |
| 32 | lvecindp2.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝐾) | |
| 33 | 10, 23, 24, 25, 11, 7, 32, 15 | ellspsni 20958 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝑌) ∈ (𝑁‘{𝑌})) |
| 34 | 2, 3, 4, 13, 17, 19, 22, 27, 29, 31, 33 | subgdisjb 19674 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)) ↔ ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)))) |
| 35 | 1, 34 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌))) |
| 36 | eldifsni 4766 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
| 37 | 8, 36 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| 38 | 10, 23, 24, 25, 3, 5, 26, 28, 9, 37 | lvecvscan2 21073 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ↔ 𝐴 = 𝐶)) |
| 39 | eldifsni 4766 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
| 40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| 41 | 10, 23, 24, 25, 3, 5, 30, 32, 15, 40 | lvecvscan2 21073 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝑌) = (𝐷 · 𝑌) ↔ 𝐵 = 𝐷)) |
| 42 | 38, 41 | anbi12d 632 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 43 | 35, 42 | mpbid 232 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Scalarcsca 17274 ·𝑠 cvsca 17275 0gc0g 17453 SubGrpcsubg 19103 Cntzccntz 19298 Abelcabl 19762 LModclmod 20817 LSpanclspn 20928 LVecclvec 21060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lvec 21061 |
| This theorem is referenced by: mapdpglem30 41721 baerlem3lem1 41726 baerlem5alem1 41727 hdmap14lem9 41895 |
| Copyright terms: Public domain | W3C validator |