MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecindp2 Structured version   Visualization version   GIF version

Theorem lvecindp2 19353
Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lvecindp2.v 𝑉 = (Base‘𝑊)
lvecindp2.p + = (+g𝑊)
lvecindp2.f 𝐹 = (Scalar‘𝑊)
lvecindp2.k 𝐾 = (Base‘𝐹)
lvecindp2.t · = ( ·𝑠𝑊)
lvecindp2.o 0 = (0g𝑊)
lvecindp2.n 𝑁 = (LSpan‘𝑊)
lvecindp2.w (𝜑𝑊 ∈ LVec)
lvecindp2.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lvecindp2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lvecindp2.a (𝜑𝐴𝐾)
lvecindp2.b (𝜑𝐵𝐾)
lvecindp2.c (𝜑𝐶𝐾)
lvecindp2.d (𝜑𝐷𝐾)
lvecindp2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lvecindp2.e (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))
Assertion
Ref Expression
lvecindp2 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem lvecindp2
StepHypRef Expression
1 lvecindp2.e . . 3 (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))
2 lvecindp2.p . . . 4 + = (+g𝑊)
3 lvecindp2.o . . . 4 0 = (0g𝑊)
4 eqid 2771 . . . 4 (Cntz‘𝑊) = (Cntz‘𝑊)
5 lvecindp2.w . . . . . 6 (𝜑𝑊 ∈ LVec)
6 lveclmod 19319 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
8 lvecindp2.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
98eldifad 3735 . . . . 5 (𝜑𝑋𝑉)
10 lvecindp2.v . . . . . 6 𝑉 = (Base‘𝑊)
11 lvecindp2.n . . . . . 6 𝑁 = (LSpan‘𝑊)
1210, 11lspsnsubg 19193 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
137, 9, 12syl2anc 573 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
14 lvecindp2.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1514eldifad 3735 . . . . 5 (𝜑𝑌𝑉)
1610, 11lspsnsubg 19193 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
177, 15, 16syl2anc 573 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
18 lvecindp2.q . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
1910, 3, 11, 5, 9, 15, 18lspdisj2 19340 . . . 4 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
20 lmodabl 19120 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
217, 20syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
224, 21, 13, 17ablcntzd 18467 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑌})))
23 lvecindp2.t . . . . 5 · = ( ·𝑠𝑊)
24 lvecindp2.f . . . . 5 𝐹 = (Scalar‘𝑊)
25 lvecindp2.k . . . . 5 𝐾 = (Base‘𝐹)
26 lvecindp2.a . . . . 5 (𝜑𝐴𝐾)
2710, 23, 24, 25, 11, 7, 26, 9lspsneli 19214 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
28 lvecindp2.c . . . . 5 (𝜑𝐶𝐾)
2910, 23, 24, 25, 11, 7, 28, 9lspsneli 19214 . . . 4 (𝜑 → (𝐶 · 𝑋) ∈ (𝑁‘{𝑋}))
30 lvecindp2.b . . . . 5 (𝜑𝐵𝐾)
3110, 23, 24, 25, 11, 7, 30, 15lspsneli 19214 . . . 4 (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌}))
32 lvecindp2.d . . . . 5 (𝜑𝐷𝐾)
3310, 23, 24, 25, 11, 7, 32, 15lspsneli 19214 . . . 4 (𝜑 → (𝐷 · 𝑌) ∈ (𝑁‘{𝑌}))
342, 3, 4, 13, 17, 19, 22, 27, 29, 31, 33subgdisjb 18313 . . 3 (𝜑 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)) ↔ ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌))))
351, 34mpbid 222 . 2 (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)))
36 eldifsni 4457 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
378, 36syl 17 . . . 4 (𝜑𝑋0 )
3810, 23, 24, 25, 3, 5, 26, 28, 9, 37lvecvscan2 19325 . . 3 (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ↔ 𝐴 = 𝐶))
39 eldifsni 4457 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
4014, 39syl 17 . . . 4 (𝜑𝑌0 )
4110, 23, 24, 25, 3, 5, 30, 32, 15, 40lvecvscan2 19325 . . 3 (𝜑 → ((𝐵 · 𝑌) = (𝐷 · 𝑌) ↔ 𝐵 = 𝐷))
4238, 41anbi12d 616 . 2 (𝜑 → (((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
4335, 42mpbid 222 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  cdif 3720  {csn 4316  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308  SubGrpcsubg 17796  Cntzccntz 17955  Abelcabl 18401  LModclmod 19073  LSpanclspn 19184  LVecclvec 19315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-drng 18959  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316
This theorem is referenced by:  mapdpglem30  37512  baerlem3lem1  37517  baerlem5alem1  37518  hdmap14lem9  37686
  Copyright terms: Public domain W3C validator