MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecindp2 Structured version   Visualization version   GIF version

Theorem lvecindp2 20030
Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lvecindp2.v 𝑉 = (Base‘𝑊)
lvecindp2.p + = (+g𝑊)
lvecindp2.f 𝐹 = (Scalar‘𝑊)
lvecindp2.k 𝐾 = (Base‘𝐹)
lvecindp2.t · = ( ·𝑠𝑊)
lvecindp2.o 0 = (0g𝑊)
lvecindp2.n 𝑁 = (LSpan‘𝑊)
lvecindp2.w (𝜑𝑊 ∈ LVec)
lvecindp2.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lvecindp2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lvecindp2.a (𝜑𝐴𝐾)
lvecindp2.b (𝜑𝐵𝐾)
lvecindp2.c (𝜑𝐶𝐾)
lvecindp2.d (𝜑𝐷𝐾)
lvecindp2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lvecindp2.e (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))
Assertion
Ref Expression
lvecindp2 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem lvecindp2
StepHypRef Expression
1 lvecindp2.e . . 3 (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))
2 lvecindp2.p . . . 4 + = (+g𝑊)
3 lvecindp2.o . . . 4 0 = (0g𝑊)
4 eqid 2738 . . . 4 (Cntz‘𝑊) = (Cntz‘𝑊)
5 lvecindp2.w . . . . . 6 (𝜑𝑊 ∈ LVec)
6 lveclmod 19997 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
8 lvecindp2.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
98eldifad 3855 . . . . 5 (𝜑𝑋𝑉)
10 lvecindp2.v . . . . . 6 𝑉 = (Base‘𝑊)
11 lvecindp2.n . . . . . 6 𝑁 = (LSpan‘𝑊)
1210, 11lspsnsubg 19871 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
137, 9, 12syl2anc 587 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
14 lvecindp2.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1514eldifad 3855 . . . . 5 (𝜑𝑌𝑉)
1610, 11lspsnsubg 19871 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
177, 15, 16syl2anc 587 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
18 lvecindp2.q . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
1910, 3, 11, 5, 9, 15, 18lspdisj2 20018 . . . 4 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
20 lmodabl 19800 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
217, 20syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
224, 21, 13, 17ablcntzd 19096 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑌})))
23 lvecindp2.t . . . . 5 · = ( ·𝑠𝑊)
24 lvecindp2.f . . . . 5 𝐹 = (Scalar‘𝑊)
25 lvecindp2.k . . . . 5 𝐾 = (Base‘𝐹)
26 lvecindp2.a . . . . 5 (𝜑𝐴𝐾)
2710, 23, 24, 25, 11, 7, 26, 9lspsneli 19892 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
28 lvecindp2.c . . . . 5 (𝜑𝐶𝐾)
2910, 23, 24, 25, 11, 7, 28, 9lspsneli 19892 . . . 4 (𝜑 → (𝐶 · 𝑋) ∈ (𝑁‘{𝑋}))
30 lvecindp2.b . . . . 5 (𝜑𝐵𝐾)
3110, 23, 24, 25, 11, 7, 30, 15lspsneli 19892 . . . 4 (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌}))
32 lvecindp2.d . . . . 5 (𝜑𝐷𝐾)
3310, 23, 24, 25, 11, 7, 32, 15lspsneli 19892 . . . 4 (𝜑 → (𝐷 · 𝑌) ∈ (𝑁‘{𝑌}))
342, 3, 4, 13, 17, 19, 22, 27, 29, 31, 33subgdisjb 18937 . . 3 (𝜑 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)) ↔ ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌))))
351, 34mpbid 235 . 2 (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)))
36 eldifsni 4678 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
378, 36syl 17 . . . 4 (𝜑𝑋0 )
3810, 23, 24, 25, 3, 5, 26, 28, 9, 37lvecvscan2 20003 . . 3 (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ↔ 𝐴 = 𝐶))
39 eldifsni 4678 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
4014, 39syl 17 . . . 4 (𝜑𝑌0 )
4110, 23, 24, 25, 3, 5, 30, 32, 15, 40lvecvscan2 20003 . . 3 (𝜑 → ((𝐵 · 𝑌) = (𝐷 · 𝑌) ↔ 𝐵 = 𝐷))
4238, 41anbi12d 634 . 2 (𝜑 → (((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
4335, 42mpbid 235 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wne 2934  cdif 3840  {csn 4516  cfv 6339  (class class class)co 7170  Basecbs 16586  +gcplusg 16668  Scalarcsca 16671   ·𝑠 cvsca 16672  0gc0g 16816  SubGrpcsubg 18391  Cntzccntz 18563  Abelcabl 19025  LModclmod 19753  LSpanclspn 19862  LVecclvec 19993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-0g 16818  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223  df-sbg 18224  df-subg 18394  df-cntz 18565  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-drng 19623  df-lmod 19755  df-lss 19823  df-lsp 19863  df-lvec 19994
This theorem is referenced by:  mapdpglem30  39339  baerlem3lem1  39344  baerlem5alem1  39345  hdmap14lem9  39513
  Copyright terms: Public domain W3C validator