MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecindp2 Structured version   Visualization version   GIF version

Theorem lvecindp2 19589
Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lvecindp2.v 𝑉 = (Base‘𝑊)
lvecindp2.p + = (+g𝑊)
lvecindp2.f 𝐹 = (Scalar‘𝑊)
lvecindp2.k 𝐾 = (Base‘𝐹)
lvecindp2.t · = ( ·𝑠𝑊)
lvecindp2.o 0 = (0g𝑊)
lvecindp2.n 𝑁 = (LSpan‘𝑊)
lvecindp2.w (𝜑𝑊 ∈ LVec)
lvecindp2.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lvecindp2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lvecindp2.a (𝜑𝐴𝐾)
lvecindp2.b (𝜑𝐵𝐾)
lvecindp2.c (𝜑𝐶𝐾)
lvecindp2.d (𝜑𝐷𝐾)
lvecindp2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lvecindp2.e (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))
Assertion
Ref Expression
lvecindp2 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem lvecindp2
StepHypRef Expression
1 lvecindp2.e . . 3 (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))
2 lvecindp2.p . . . 4 + = (+g𝑊)
3 lvecindp2.o . . . 4 0 = (0g𝑊)
4 eqid 2793 . . . 4 (Cntz‘𝑊) = (Cntz‘𝑊)
5 lvecindp2.w . . . . . 6 (𝜑𝑊 ∈ LVec)
6 lveclmod 19556 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
8 lvecindp2.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
98eldifad 3866 . . . . 5 (𝜑𝑋𝑉)
10 lvecindp2.v . . . . . 6 𝑉 = (Base‘𝑊)
11 lvecindp2.n . . . . . 6 𝑁 = (LSpan‘𝑊)
1210, 11lspsnsubg 19430 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
137, 9, 12syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
14 lvecindp2.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1514eldifad 3866 . . . . 5 (𝜑𝑌𝑉)
1610, 11lspsnsubg 19430 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
177, 15, 16syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
18 lvecindp2.q . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
1910, 3, 11, 5, 9, 15, 18lspdisj2 19577 . . . 4 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
20 lmodabl 19359 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
217, 20syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
224, 21, 13, 17ablcntzd 18688 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑌})))
23 lvecindp2.t . . . . 5 · = ( ·𝑠𝑊)
24 lvecindp2.f . . . . 5 𝐹 = (Scalar‘𝑊)
25 lvecindp2.k . . . . 5 𝐾 = (Base‘𝐹)
26 lvecindp2.a . . . . 5 (𝜑𝐴𝐾)
2710, 23, 24, 25, 11, 7, 26, 9lspsneli 19451 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
28 lvecindp2.c . . . . 5 (𝜑𝐶𝐾)
2910, 23, 24, 25, 11, 7, 28, 9lspsneli 19451 . . . 4 (𝜑 → (𝐶 · 𝑋) ∈ (𝑁‘{𝑋}))
30 lvecindp2.b . . . . 5 (𝜑𝐵𝐾)
3110, 23, 24, 25, 11, 7, 30, 15lspsneli 19451 . . . 4 (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌}))
32 lvecindp2.d . . . . 5 (𝜑𝐷𝐾)
3310, 23, 24, 25, 11, 7, 32, 15lspsneli 19451 . . . 4 (𝜑 → (𝐷 · 𝑌) ∈ (𝑁‘{𝑌}))
342, 3, 4, 13, 17, 19, 22, 27, 29, 31, 33subgdisjb 18534 . . 3 (𝜑 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)) ↔ ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌))))
351, 34mpbid 233 . 2 (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)))
36 eldifsni 4623 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
378, 36syl 17 . . . 4 (𝜑𝑋0 )
3810, 23, 24, 25, 3, 5, 26, 28, 9, 37lvecvscan2 19562 . . 3 (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ↔ 𝐴 = 𝐶))
39 eldifsni 4623 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
4014, 39syl 17 . . . 4 (𝜑𝑌0 )
4110, 23, 24, 25, 3, 5, 30, 32, 15, 40lvecvscan2 19562 . . 3 (𝜑 → ((𝐵 · 𝑌) = (𝐷 · 𝑌) ↔ 𝐵 = 𝐷))
4238, 41anbi12d 630 . 2 (𝜑 → (((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
4335, 42mpbid 233 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wcel 2079  wne 2982  cdif 3851  {csn 4466  cfv 6217  (class class class)co 7007  Basecbs 16300  +gcplusg 16382  Scalarcsca 16385   ·𝑠 cvsca 16386  0gc0g 16530  SubGrpcsubg 18015  Cntzccntz 18174  Abelcabl 18622  LModclmod 19312  LSpanclspn 19421  LVecclvec 19552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-tpos 7734  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-2 11537  df-3 11538  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-0g 16532  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-grp 17852  df-minusg 17853  df-sbg 17854  df-subg 18018  df-cntz 18176  df-cmn 18623  df-abl 18624  df-mgp 18918  df-ur 18930  df-ring 18977  df-oppr 19051  df-dvdsr 19069  df-unit 19070  df-invr 19100  df-drng 19182  df-lmod 19314  df-lss 19382  df-lsp 19422  df-lvec 19553
This theorem is referenced by:  mapdpglem30  38319  baerlem3lem1  38324  baerlem5alem1  38325  hdmap14lem9  38493
  Copyright terms: Public domain W3C validator