MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecindp2 Structured version   Visualization version   GIF version

Theorem lvecindp2 21056
Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lvecindp2.v 𝑉 = (Base‘𝑊)
lvecindp2.p + = (+g𝑊)
lvecindp2.f 𝐹 = (Scalar‘𝑊)
lvecindp2.k 𝐾 = (Base‘𝐹)
lvecindp2.t · = ( ·𝑠𝑊)
lvecindp2.o 0 = (0g𝑊)
lvecindp2.n 𝑁 = (LSpan‘𝑊)
lvecindp2.w (𝜑𝑊 ∈ LVec)
lvecindp2.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lvecindp2.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lvecindp2.a (𝜑𝐴𝐾)
lvecindp2.b (𝜑𝐵𝐾)
lvecindp2.c (𝜑𝐶𝐾)
lvecindp2.d (𝜑𝐷𝐾)
lvecindp2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lvecindp2.e (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))
Assertion
Ref Expression
lvecindp2 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem lvecindp2
StepHypRef Expression
1 lvecindp2.e . . 3 (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)))
2 lvecindp2.p . . . 4 + = (+g𝑊)
3 lvecindp2.o . . . 4 0 = (0g𝑊)
4 eqid 2730 . . . 4 (Cntz‘𝑊) = (Cntz‘𝑊)
5 lvecindp2.w . . . . . 6 (𝜑𝑊 ∈ LVec)
6 lveclmod 21020 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
8 lvecindp2.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
98eldifad 3929 . . . . 5 (𝜑𝑋𝑉)
10 lvecindp2.v . . . . . 6 𝑉 = (Base‘𝑊)
11 lvecindp2.n . . . . . 6 𝑁 = (LSpan‘𝑊)
1210, 11lspsnsubg 20893 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
137, 9, 12syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
14 lvecindp2.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1514eldifad 3929 . . . . 5 (𝜑𝑌𝑉)
1610, 11lspsnsubg 20893 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
177, 15, 16syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
18 lvecindp2.q . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
1910, 3, 11, 5, 9, 15, 18lspdisj2 21044 . . . 4 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
20 lmodabl 20822 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
217, 20syl 17 . . . . 5 (𝜑𝑊 ∈ Abel)
224, 21, 13, 17ablcntzd 19794 . . . 4 (𝜑 → (𝑁‘{𝑋}) ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑌})))
23 lvecindp2.t . . . . 5 · = ( ·𝑠𝑊)
24 lvecindp2.f . . . . 5 𝐹 = (Scalar‘𝑊)
25 lvecindp2.k . . . . 5 𝐾 = (Base‘𝐹)
26 lvecindp2.a . . . . 5 (𝜑𝐴𝐾)
2710, 23, 24, 25, 11, 7, 26, 9ellspsni 20914 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
28 lvecindp2.c . . . . 5 (𝜑𝐶𝐾)
2910, 23, 24, 25, 11, 7, 28, 9ellspsni 20914 . . . 4 (𝜑 → (𝐶 · 𝑋) ∈ (𝑁‘{𝑋}))
30 lvecindp2.b . . . . 5 (𝜑𝐵𝐾)
3110, 23, 24, 25, 11, 7, 30, 15ellspsni 20914 . . . 4 (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌}))
32 lvecindp2.d . . . . 5 (𝜑𝐷𝐾)
3310, 23, 24, 25, 11, 7, 32, 15ellspsni 20914 . . . 4 (𝜑 → (𝐷 · 𝑌) ∈ (𝑁‘{𝑌}))
342, 3, 4, 13, 17, 19, 22, 27, 29, 31, 33subgdisjb 19630 . . 3 (𝜑 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)) ↔ ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌))))
351, 34mpbid 232 . 2 (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)))
36 eldifsni 4757 . . . . 5 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
378, 36syl 17 . . . 4 (𝜑𝑋0 )
3810, 23, 24, 25, 3, 5, 26, 28, 9, 37lvecvscan2 21029 . . 3 (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ↔ 𝐴 = 𝐶))
39 eldifsni 4757 . . . . 5 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
4014, 39syl 17 . . . 4 (𝜑𝑌0 )
4110, 23, 24, 25, 3, 5, 30, 32, 15, 40lvecvscan2 21029 . . 3 (𝜑 → ((𝐵 · 𝑌) = (𝐷 · 𝑌) ↔ 𝐵 = 𝐷))
4238, 41anbi12d 632 . 2 (𝜑 → (((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
4335, 42mpbid 232 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  SubGrpcsubg 19059  Cntzccntz 19254  Abelcabl 19718  LModclmod 20773  LSpanclspn 20884  LVecclvec 21016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017
This theorem is referenced by:  mapdpglem30  41703  baerlem3lem1  41708  baerlem5alem1  41709  hdmap14lem9  41877
  Copyright terms: Public domain W3C validator