Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lvecindp2 | Structured version Visualization version GIF version |
Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.) |
Ref | Expression |
---|---|
lvecindp2.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecindp2.p | ⊢ + = (+g‘𝑊) |
lvecindp2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecindp2.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecindp2.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecindp2.o | ⊢ 0 = (0g‘𝑊) |
lvecindp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lvecindp2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecindp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lvecindp2.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lvecindp2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lvecindp2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐾) |
lvecindp2.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
lvecindp2.d | ⊢ (𝜑 → 𝐷 ∈ 𝐾) |
lvecindp2.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lvecindp2.e | ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) |
Ref | Expression |
---|---|
lvecindp2 | ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecindp2.e | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) | |
2 | lvecindp2.p | . . . 4 ⊢ + = (+g‘𝑊) | |
3 | lvecindp2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
4 | eqid 2738 | . . . 4 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
5 | lvecindp2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | lveclmod 20368 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
8 | lvecindp2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
9 | 8 | eldifad 3899 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
10 | lvecindp2.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
11 | lvecindp2.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
12 | 10, 11 | lspsnsubg 20242 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
13 | 7, 9, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
14 | lvecindp2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
15 | 14 | eldifad 3899 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
16 | 10, 11 | lspsnsubg 20242 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
17 | 7, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
18 | lvecindp2.q | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
19 | 10, 3, 11, 5, 9, 15, 18 | lspdisj2 20389 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 }) |
20 | lmodabl 20170 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
21 | 7, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
22 | 4, 21, 13, 17 | ablcntzd 19458 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑌}))) |
23 | lvecindp2.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
24 | lvecindp2.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
25 | lvecindp2.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
26 | lvecindp2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
27 | 10, 23, 24, 25, 11, 7, 26, 9 | lspsneli 20263 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋})) |
28 | lvecindp2.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
29 | 10, 23, 24, 25, 11, 7, 28, 9 | lspsneli 20263 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝑋) ∈ (𝑁‘{𝑋})) |
30 | lvecindp2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐾) | |
31 | 10, 23, 24, 25, 11, 7, 30, 15 | lspsneli 20263 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌})) |
32 | lvecindp2.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝐾) | |
33 | 10, 23, 24, 25, 11, 7, 32, 15 | lspsneli 20263 | . . . 4 ⊢ (𝜑 → (𝐷 · 𝑌) ∈ (𝑁‘{𝑌})) |
34 | 2, 3, 4, 13, 17, 19, 22, 27, 29, 31, 33 | subgdisjb 19299 | . . 3 ⊢ (𝜑 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌)) ↔ ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)))) |
35 | 1, 34 | mpbid 231 | . 2 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌))) |
36 | eldifsni 4723 | . . . . 5 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
37 | 8, 36 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
38 | 10, 23, 24, 25, 3, 5, 26, 28, 9, 37 | lvecvscan2 20374 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐶 · 𝑋) ↔ 𝐴 = 𝐶)) |
39 | eldifsni 4723 | . . . . 5 ⊢ (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
40 | 14, 39 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
41 | 10, 23, 24, 25, 3, 5, 30, 32, 15, 40 | lvecvscan2 20374 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝑌) = (𝐷 · 𝑌) ↔ 𝐵 = 𝐷)) |
42 | 38, 41 | anbi12d 631 | . 2 ⊢ (𝜑 → (((𝐴 · 𝑋) = (𝐶 · 𝑋) ∧ (𝐵 · 𝑌) = (𝐷 · 𝑌)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
43 | 35, 42 | mpbid 231 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 {csn 4561 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 SubGrpcsubg 18749 Cntzccntz 18921 Abelcabl 19387 LModclmod 20123 LSpanclspn 20233 LVecclvec 20364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 |
This theorem is referenced by: mapdpglem30 39716 baerlem3lem1 39721 baerlem5alem1 39722 hdmap14lem9 39890 |
Copyright terms: Public domain | W3C validator |