![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltadd2 | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltadd2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axltadd 11363 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵))) | |
2 | oveq2 7456 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐶 + 𝐴) = (𝐶 + 𝐵)) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 = 𝐵 → (𝐶 + 𝐴) = (𝐶 + 𝐵))) |
4 | axltadd 11363 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 → (𝐶 + 𝐵) < (𝐶 + 𝐴))) | |
5 | 4 | 3com12 1123 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐴 → (𝐶 + 𝐵) < (𝐶 + 𝐴))) |
6 | 3, 5 | orim12d 965 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ∨ (𝐶 + 𝐵) < (𝐶 + 𝐴)))) |
7 | 6 | con3d 152 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ ((𝐶 + 𝐴) = (𝐶 + 𝐵) ∨ (𝐶 + 𝐵) < (𝐶 + 𝐴)) → ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
8 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | |
9 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) | |
10 | 8, 9 | readdcld 11319 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐴) ∈ ℝ) |
11 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) | |
12 | 8, 11 | readdcld 11319 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) |
13 | axlttri 11361 | . . . 4 ⊢ (((𝐶 + 𝐴) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ ¬ ((𝐶 + 𝐴) = (𝐶 + 𝐵) ∨ (𝐶 + 𝐵) < (𝐶 + 𝐴)))) | |
14 | 10, 12, 13 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ ¬ ((𝐶 + 𝐴) = (𝐶 + 𝐵) ∨ (𝐶 + 𝐵) < (𝐶 + 𝐴)))) |
15 | axlttri 11361 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | |
16 | 9, 11, 15 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
17 | 7, 14, 16 | 3imtr4d 294 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) → 𝐴 < 𝐵)) |
18 | 1, 17 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 + caddc 11187 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-addrcl 11245 ax-pre-lttri 11258 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: ltadd2i 11421 ltadd2d 11446 readdcan 11464 ltaddneg 11505 ltadd1 11757 ltaddpos 11780 ltaddsublt 11917 avglt1 12531 flbi2 13868 dp2ltc 32851 sn-ltaddpos 42417 sn-ltaddneg 42418 |
Copyright terms: Public domain | W3C validator |