| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > le2tri3i | Structured version Visualization version GIF version | ||
| Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| lt.3 | ⊢ 𝐶 ∈ ℝ |
| Ref | Expression |
|---|---|
| le2tri3i | ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.2 | . . . . . 6 ⊢ 𝐵 ∈ ℝ | |
| 2 | lt.3 | . . . . . 6 ⊢ 𝐶 ∈ ℝ | |
| 3 | lt.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
| 4 | 1, 2, 3 | letri 11303 | . . . . 5 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐵 ≤ 𝐴) |
| 5 | 3, 1 | letri3i 11290 | . . . . . 6 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)) |
| 6 | 5 | biimpri 228 | . . . . 5 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) → 𝐴 = 𝐵) |
| 7 | 4, 6 | sylan2 593 | . . . 4 ⊢ ((𝐴 ≤ 𝐵 ∧ (𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) → 𝐴 = 𝐵) |
| 8 | 7 | 3impb 1114 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐴 = 𝐵) |
| 9 | 2, 3, 1 | letri 11303 | . . . . . 6 ⊢ ((𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵) → 𝐶 ≤ 𝐵) |
| 10 | 1, 2 | letri3i 11290 | . . . . . . 7 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 11 | 10 | biimpri 228 | . . . . . 6 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐵 = 𝐶) |
| 12 | 9, 11 | sylan2 593 | . . . . 5 ⊢ ((𝐵 ≤ 𝐶 ∧ (𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐵 = 𝐶) |
| 13 | 12 | 3impb 1114 | . . . 4 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵) → 𝐵 = 𝐶) |
| 14 | 13 | 3comr 1125 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐵 = 𝐶) |
| 15 | 3, 1, 2 | letri 11303 | . . . 4 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
| 16 | 3, 2 | letri3i 11290 | . . . . . 6 ⊢ (𝐴 = 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) |
| 17 | 16 | biimpri 228 | . . . . 5 ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐴 = 𝐶) |
| 18 | 17 | eqcomd 2735 | . . . 4 ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐶 = 𝐴) |
| 19 | 15, 18 | stoic3 1776 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐶 = 𝐴) |
| 20 | 8, 14, 19 | 3jca 1128 | . 2 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
| 21 | 3 | eqlei 11284 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ≤ 𝐵) |
| 22 | 1 | eqlei 11284 | . . 3 ⊢ (𝐵 = 𝐶 → 𝐵 ≤ 𝐶) |
| 23 | 2 | eqlei 11284 | . . 3 ⊢ (𝐶 = 𝐴 → 𝐶 ≤ 𝐴) |
| 24 | 21, 22, 23 | 3anim123i 1151 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) |
| 25 | 20, 24 | impbii 209 | 1 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |