![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > le2tri3i | Structured version Visualization version GIF version |
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
lt.3 | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
le2tri3i | ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.2 | . . . . . 6 ⊢ 𝐵 ∈ ℝ | |
2 | lt.3 | . . . . . 6 ⊢ 𝐶 ∈ ℝ | |
3 | lt.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
4 | 1, 2, 3 | letri 11343 | . . . . 5 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐵 ≤ 𝐴) |
5 | 3, 1 | letri3i 11330 | . . . . . 6 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)) |
6 | 5 | biimpri 227 | . . . . 5 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) → 𝐴 = 𝐵) |
7 | 4, 6 | sylan2 594 | . . . 4 ⊢ ((𝐴 ≤ 𝐵 ∧ (𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) → 𝐴 = 𝐵) |
8 | 7 | 3impb 1116 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐴 = 𝐵) |
9 | 2, 3, 1 | letri 11343 | . . . . . 6 ⊢ ((𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵) → 𝐶 ≤ 𝐵) |
10 | 1, 2 | letri3i 11330 | . . . . . . 7 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
11 | 10 | biimpri 227 | . . . . . 6 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐵 = 𝐶) |
12 | 9, 11 | sylan2 594 | . . . . 5 ⊢ ((𝐵 ≤ 𝐶 ∧ (𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐵 = 𝐶) |
13 | 12 | 3impb 1116 | . . . 4 ⊢ ((𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵) → 𝐵 = 𝐶) |
14 | 13 | 3comr 1126 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐵 = 𝐶) |
15 | 3, 1, 2 | letri 11343 | . . . 4 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) |
16 | 3, 2 | letri3i 11330 | . . . . . 6 ⊢ (𝐴 = 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) |
17 | 16 | biimpri 227 | . . . . 5 ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐴 = 𝐶) |
18 | 17 | eqcomd 2739 | . . . 4 ⊢ ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐶 = 𝐴) |
19 | 15, 18 | stoic3 1779 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → 𝐶 = 𝐴) |
20 | 8, 14, 19 | 3jca 1129 | . 2 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) → (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
21 | 3 | eqlei 11324 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ≤ 𝐵) |
22 | 1 | eqlei 11324 | . . 3 ⊢ (𝐵 = 𝐶 → 𝐵 ≤ 𝐶) |
23 | 2 | eqlei 11324 | . . 3 ⊢ (𝐶 = 𝐴 → 𝐶 ≤ 𝐴) |
24 | 21, 22, 23 | 3anim123i 1152 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴)) |
25 | 20, 24 | impbii 208 | 1 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 ℝcr 11109 ≤ cle 11249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |