MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  le2tri3i Structured version   Visualization version   GIF version

Theorem le2tri3i 10762
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion
Ref Expression
le2tri3i ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))

Proof of Theorem le2tri3i
StepHypRef Expression
1 lt.2 . . . . . 6 𝐵 ∈ ℝ
2 lt.3 . . . . . 6 𝐶 ∈ ℝ
3 lt.1 . . . . . 6 𝐴 ∈ ℝ
41, 2, 3letri 10761 . . . . 5 ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)
53, 1letri3i 10748 . . . . . 6 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
65biimpri 230 . . . . 5 ((𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
74, 6sylan2 594 . . . 4 ((𝐴𝐵 ∧ (𝐵𝐶𝐶𝐴)) → 𝐴 = 𝐵)
873impb 1109 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐴 = 𝐵)
92, 3, 1letri 10761 . . . . . 6 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
101, 2letri3i 10748 . . . . . . 7 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
1110biimpri 230 . . . . . 6 ((𝐵𝐶𝐶𝐵) → 𝐵 = 𝐶)
129, 11sylan2 594 . . . . 5 ((𝐵𝐶 ∧ (𝐶𝐴𝐴𝐵)) → 𝐵 = 𝐶)
13123impb 1109 . . . 4 ((𝐵𝐶𝐶𝐴𝐴𝐵) → 𝐵 = 𝐶)
14133comr 1119 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐵 = 𝐶)
153, 1, 2letri 10761 . . . 4 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
163, 2letri3i 10748 . . . . . 6 (𝐴 = 𝐶 ↔ (𝐴𝐶𝐶𝐴))
1716biimpri 230 . . . . 5 ((𝐴𝐶𝐶𝐴) → 𝐴 = 𝐶)
1817eqcomd 2825 . . . 4 ((𝐴𝐶𝐶𝐴) → 𝐶 = 𝐴)
1915, 18stoic3 1770 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶 = 𝐴)
208, 14, 193jca 1122 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
213eqlei 10742 . . 3 (𝐴 = 𝐵𝐴𝐵)
221eqlei 10742 . . 3 (𝐵 = 𝐶𝐵𝐶)
232eqlei 10742 . . 3 (𝐶 = 𝐴𝐶𝐴)
2421, 22, 233anim123i 1145 . 2 ((𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴) → (𝐴𝐵𝐵𝐶𝐶𝐴))
2520, 24impbii 211 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5057  cr 10528  cle 10668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator