MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  le2tri3i Structured version   Visualization version   GIF version

Theorem le2tri3i 11370
Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
lt.3 𝐶 ∈ ℝ
Assertion
Ref Expression
le2tri3i ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))

Proof of Theorem le2tri3i
StepHypRef Expression
1 lt.2 . . . . . 6 𝐵 ∈ ℝ
2 lt.3 . . . . . 6 𝐶 ∈ ℝ
3 lt.1 . . . . . 6 𝐴 ∈ ℝ
41, 2, 3letri 11369 . . . . 5 ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)
53, 1letri3i 11356 . . . . . 6 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
65biimpri 228 . . . . 5 ((𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
74, 6sylan2 593 . . . 4 ((𝐴𝐵 ∧ (𝐵𝐶𝐶𝐴)) → 𝐴 = 𝐵)
873impb 1114 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐴 = 𝐵)
92, 3, 1letri 11369 . . . . . 6 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
101, 2letri3i 11356 . . . . . . 7 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
1110biimpri 228 . . . . . 6 ((𝐵𝐶𝐶𝐵) → 𝐵 = 𝐶)
129, 11sylan2 593 . . . . 5 ((𝐵𝐶 ∧ (𝐶𝐴𝐴𝐵)) → 𝐵 = 𝐶)
13123impb 1114 . . . 4 ((𝐵𝐶𝐶𝐴𝐴𝐵) → 𝐵 = 𝐶)
14133comr 1125 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐵 = 𝐶)
153, 1, 2letri 11369 . . . 4 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
163, 2letri3i 11356 . . . . . 6 (𝐴 = 𝐶 ↔ (𝐴𝐶𝐶𝐴))
1716biimpri 228 . . . . 5 ((𝐴𝐶𝐶𝐴) → 𝐴 = 𝐶)
1817eqcomd 2742 . . . 4 ((𝐴𝐶𝐶𝐴) → 𝐶 = 𝐴)
1915, 18stoic3 1776 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶 = 𝐴)
208, 14, 193jca 1128 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
213eqlei 11350 . . 3 (𝐴 = 𝐵𝐴𝐵)
221eqlei 11350 . . 3 (𝐵 = 𝐶𝐵𝐶)
232eqlei 11350 . . 3 (𝐶 = 𝐴𝐶𝐴)
2421, 22, 233anim123i 1151 . 2 ((𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴) → (𝐴𝐵𝐵𝐶𝐶𝐴))
2520, 24impbii 209 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cr 11133  cle 11275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator