Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dplti Structured version   Visualization version   GIF version

Theorem dplti 30158
Description: Comparing a decimal expansions with the next higher integer. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dplti.a 𝐴 ∈ ℕ0
dplti.b 𝐵 ∈ ℝ+
dplti.c 𝐶 ∈ ℕ0
dplti.1 𝐵 < 10
dplti.2 (𝐴 + 1) = 𝐶
Assertion
Ref Expression
dplti (𝐴.𝐵) < 𝐶

Proof of Theorem dplti
StepHypRef Expression
1 dplti.a . . . 4 𝐴 ∈ ℕ0
2 dplti.b . . . . 5 𝐵 ∈ ℝ+
3 rpre 12120 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
42, 3ax-mp 5 . . . 4 𝐵 ∈ ℝ
51, 4dpval2 30146 . . 3 (𝐴.𝐵) = (𝐴 + (𝐵 / 10))
6 dplti.1 . . . . 5 𝐵 < 10
7 10re 11840 . . . . . . . 8 10 ∈ ℝ
8 10pos 11838 . . . . . . . 8 0 < 10
97, 8pm3.2i 464 . . . . . . 7 (10 ∈ ℝ ∧ 0 < 10)
10 elrp 12114 . . . . . . 7 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
119, 10mpbir 223 . . . . . 6 10 ∈ ℝ+
12 divlt1lt 12183 . . . . . 6 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ+) → ((𝐵 / 10) < 1 ↔ 𝐵 < 10))
134, 11, 12mp2an 685 . . . . 5 ((𝐵 / 10) < 1 ↔ 𝐵 < 10)
146, 13mpbir 223 . . . 4 (𝐵 / 10) < 1
15 0re 10358 . . . . . . 7 0 ∈ ℝ
1615, 8gtneii 10468 . . . . . 6 10 ≠ 0
174, 7, 16redivcli 11118 . . . . 5 (𝐵 / 10) ∈ ℝ
18 1re 10356 . . . . 5 1 ∈ ℝ
19 nn0ssre 11622 . . . . . 6 0 ⊆ ℝ
2019, 1sselii 3824 . . . . 5 𝐴 ∈ ℝ
2117, 18, 20ltadd2i 10487 . . . 4 ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1))
2214, 21mpbi 222 . . 3 (𝐴 + (𝐵 / 10)) < (𝐴 + 1)
235, 22eqbrtri 4894 . 2 (𝐴.𝐵) < (𝐴 + 1)
24 dplti.2 . 2 (𝐴 + 1) = 𝐶
2523, 24breqtri 4898 1 (𝐴.𝐵) < 𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1658  wcel 2166   class class class wbr 4873  (class class class)co 6905  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   < clt 10391   / cdiv 11009  0cn0 11618  cdc 11821  +crp 12112  .cdp 30141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-dec 11822  df-rp 12113  df-dp2 30125  df-dp 30142
This theorem is referenced by:  hgt750lem  31278
  Copyright terms: Public domain W3C validator