![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dplti | Structured version Visualization version GIF version |
Description: Comparing a decimal expansions with the next higher integer. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
dplti.a | ⊢ 𝐴 ∈ ℕ0 |
dplti.b | ⊢ 𝐵 ∈ ℝ+ |
dplti.c | ⊢ 𝐶 ∈ ℕ0 |
dplti.1 | ⊢ 𝐵 < ;10 |
dplti.2 | ⊢ (𝐴 + 1) = 𝐶 |
Ref | Expression |
---|---|
dplti | ⊢ (𝐴.𝐵) < 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dplti.a | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
2 | dplti.b | . . . . 5 ⊢ 𝐵 ∈ ℝ+ | |
3 | rpre 12981 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 𝐵 ∈ ℝ |
5 | 1, 4 | dpval2 32054 | . . 3 ⊢ (𝐴.𝐵) = (𝐴 + (𝐵 / ;10)) |
6 | dplti.1 | . . . . 5 ⊢ 𝐵 < ;10 | |
7 | 10re 12695 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
8 | 10pos 12693 | . . . . . . . 8 ⊢ 0 < ;10 | |
9 | 7, 8 | pm3.2i 471 | . . . . . . 7 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
10 | elrp 12975 | . . . . . . 7 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
11 | 9, 10 | mpbir 230 | . . . . . 6 ⊢ ;10 ∈ ℝ+ |
12 | divlt1lt 13042 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
13 | 4, 11, 12 | mp2an 690 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
14 | 6, 13 | mpbir 230 | . . . 4 ⊢ (𝐵 / ;10) < 1 |
15 | 0re 11215 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
16 | 15, 8 | gtneii 11325 | . . . . . 6 ⊢ ;10 ≠ 0 |
17 | 4, 7, 16 | redivcli 11980 | . . . . 5 ⊢ (𝐵 / ;10) ∈ ℝ |
18 | 1re 11213 | . . . . 5 ⊢ 1 ∈ ℝ | |
19 | nn0ssre 12475 | . . . . . 6 ⊢ ℕ0 ⊆ ℝ | |
20 | 19, 1 | sselii 3979 | . . . . 5 ⊢ 𝐴 ∈ ℝ |
21 | 17, 18, 20 | ltadd2i 11344 | . . . 4 ⊢ ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1)) |
22 | 14, 21 | mpbi 229 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1) |
23 | 5, 22 | eqbrtri 5169 | . 2 ⊢ (𝐴.𝐵) < (𝐴 + 1) |
24 | dplti.2 | . 2 ⊢ (𝐴 + 1) = 𝐶 | |
25 | 23, 24 | breqtri 5173 | 1 ⊢ (𝐴.𝐵) < 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7408 ℝcr 11108 0cc0 11109 1c1 11110 + caddc 11112 < clt 11247 / cdiv 11870 ℕ0cn0 12471 ;cdc 12676 ℝ+crp 12973 .cdp 32049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-dec 12677 df-rp 12974 df-dp2 32033 df-dp 32050 |
This theorem is referenced by: hgt750lem 33658 |
Copyright terms: Public domain | W3C validator |