| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dplti | Structured version Visualization version GIF version | ||
| Description: Comparing a decimal expansions with the next higher integer. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| dplti.a | ⊢ 𝐴 ∈ ℕ0 |
| dplti.b | ⊢ 𝐵 ∈ ℝ+ |
| dplti.c | ⊢ 𝐶 ∈ ℕ0 |
| dplti.1 | ⊢ 𝐵 < ;10 |
| dplti.2 | ⊢ (𝐴 + 1) = 𝐶 |
| Ref | Expression |
|---|---|
| dplti | ⊢ (𝐴.𝐵) < 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dplti.a | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dplti.b | . . . . 5 ⊢ 𝐵 ∈ ℝ+ | |
| 3 | rpre 13015 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 𝐵 ∈ ℝ |
| 5 | 1, 4 | dpval2 32813 | . . 3 ⊢ (𝐴.𝐵) = (𝐴 + (𝐵 / ;10)) |
| 6 | dplti.1 | . . . . 5 ⊢ 𝐵 < ;10 | |
| 7 | 10re 12725 | . . . . . . . 8 ⊢ ;10 ∈ ℝ | |
| 8 | 10pos 12723 | . . . . . . . 8 ⊢ 0 < ;10 | |
| 9 | 7, 8 | pm3.2i 470 | . . . . . . 7 ⊢ (;10 ∈ ℝ ∧ 0 < ;10) |
| 10 | elrp 13008 | . . . . . . 7 ⊢ (;10 ∈ ℝ+ ↔ (;10 ∈ ℝ ∧ 0 < ;10)) | |
| 11 | 9, 10 | mpbir 231 | . . . . . 6 ⊢ ;10 ∈ ℝ+ |
| 12 | divlt1lt 13076 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ ;10 ∈ ℝ+) → ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10)) | |
| 13 | 4, 11, 12 | mp2an 692 | . . . . 5 ⊢ ((𝐵 / ;10) < 1 ↔ 𝐵 < ;10) |
| 14 | 6, 13 | mpbir 231 | . . . 4 ⊢ (𝐵 / ;10) < 1 |
| 15 | 0re 11235 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 16 | 15, 8 | gtneii 11345 | . . . . . 6 ⊢ ;10 ≠ 0 |
| 17 | 4, 7, 16 | redivcli 12006 | . . . . 5 ⊢ (𝐵 / ;10) ∈ ℝ |
| 18 | 1re 11233 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 19 | nn0ssre 12503 | . . . . . 6 ⊢ ℕ0 ⊆ ℝ | |
| 20 | 19, 1 | sselii 3955 | . . . . 5 ⊢ 𝐴 ∈ ℝ |
| 21 | 17, 18, 20 | ltadd2i 11364 | . . . 4 ⊢ ((𝐵 / ;10) < 1 ↔ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1)) |
| 22 | 14, 21 | mpbi 230 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) < (𝐴 + 1) |
| 23 | 5, 22 | eqbrtri 5140 | . 2 ⊢ (𝐴.𝐵) < (𝐴 + 1) |
| 24 | dplti.2 | . 2 ⊢ (𝐴 + 1) = 𝐶 | |
| 25 | 23, 24 | breqtri 5144 | 1 ⊢ (𝐴.𝐵) < 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7403 ℝcr 11126 0cc0 11127 1c1 11128 + caddc 11130 < clt 11267 / cdiv 11892 ℕ0cn0 12499 ;cdc 12706 ℝ+crp 13006 .cdp 32808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 df-rp 13007 df-dp2 32792 df-dp 32809 |
| This theorem is referenced by: hgt750lem 34629 |
| Copyright terms: Public domain | W3C validator |