Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dplti Structured version   Visualization version   GIF version

Theorem dplti 31179
Description: Comparing a decimal expansions with the next higher integer. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dplti.a 𝐴 ∈ ℕ0
dplti.b 𝐵 ∈ ℝ+
dplti.c 𝐶 ∈ ℕ0
dplti.1 𝐵 < 10
dplti.2 (𝐴 + 1) = 𝐶
Assertion
Ref Expression
dplti (𝐴.𝐵) < 𝐶

Proof of Theorem dplti
StepHypRef Expression
1 dplti.a . . . 4 𝐴 ∈ ℕ0
2 dplti.b . . . . 5 𝐵 ∈ ℝ+
3 rpre 12738 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
42, 3ax-mp 5 . . . 4 𝐵 ∈ ℝ
51, 4dpval2 31167 . . 3 (𝐴.𝐵) = (𝐴 + (𝐵 / 10))
6 dplti.1 . . . . 5 𝐵 < 10
7 10re 12456 . . . . . . . 8 10 ∈ ℝ
8 10pos 12454 . . . . . . . 8 0 < 10
97, 8pm3.2i 471 . . . . . . 7 (10 ∈ ℝ ∧ 0 < 10)
10 elrp 12732 . . . . . . 7 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
119, 10mpbir 230 . . . . . 6 10 ∈ ℝ+
12 divlt1lt 12799 . . . . . 6 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ+) → ((𝐵 / 10) < 1 ↔ 𝐵 < 10))
134, 11, 12mp2an 689 . . . . 5 ((𝐵 / 10) < 1 ↔ 𝐵 < 10)
146, 13mpbir 230 . . . 4 (𝐵 / 10) < 1
15 0re 10977 . . . . . . 7 0 ∈ ℝ
1615, 8gtneii 11087 . . . . . 6 10 ≠ 0
174, 7, 16redivcli 11742 . . . . 5 (𝐵 / 10) ∈ ℝ
18 1re 10975 . . . . 5 1 ∈ ℝ
19 nn0ssre 12237 . . . . . 6 0 ⊆ ℝ
2019, 1sselii 3918 . . . . 5 𝐴 ∈ ℝ
2117, 18, 20ltadd2i 11106 . . . 4 ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1))
2214, 21mpbi 229 . . 3 (𝐴 + (𝐵 / 10)) < (𝐴 + 1)
235, 22eqbrtri 5095 . 2 (𝐴.𝐵) < (𝐴 + 1)
24 dplti.2 . 2 (𝐴 + 1) = 𝐶
2523, 24breqtri 5099 1 (𝐴.𝐵) < 𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009   / cdiv 11632  0cn0 12233  cdc 12437  +crp 12730  .cdp 31162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-dec 12438  df-rp 12731  df-dp2 31146  df-dp 31163
This theorem is referenced by:  hgt750lem  32631
  Copyright terms: Public domain W3C validator