Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dplti Structured version   Visualization version   GIF version

Theorem dplti 31817
Description: Comparing a decimal expansions with the next higher integer. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
dplti.a 𝐴 ∈ ℕ0
dplti.b 𝐵 ∈ ℝ+
dplti.c 𝐶 ∈ ℕ0
dplti.1 𝐵 < 10
dplti.2 (𝐴 + 1) = 𝐶
Assertion
Ref Expression
dplti (𝐴.𝐵) < 𝐶

Proof of Theorem dplti
StepHypRef Expression
1 dplti.a . . . 4 𝐴 ∈ ℕ0
2 dplti.b . . . . 5 𝐵 ∈ ℝ+
3 rpre 12931 . . . . 5 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
42, 3ax-mp 5 . . . 4 𝐵 ∈ ℝ
51, 4dpval2 31805 . . 3 (𝐴.𝐵) = (𝐴 + (𝐵 / 10))
6 dplti.1 . . . . 5 𝐵 < 10
7 10re 12645 . . . . . . . 8 10 ∈ ℝ
8 10pos 12643 . . . . . . . 8 0 < 10
97, 8pm3.2i 472 . . . . . . 7 (10 ∈ ℝ ∧ 0 < 10)
10 elrp 12925 . . . . . . 7 (10 ∈ ℝ+ ↔ (10 ∈ ℝ ∧ 0 < 10))
119, 10mpbir 230 . . . . . 6 10 ∈ ℝ+
12 divlt1lt 12992 . . . . . 6 ((𝐵 ∈ ℝ ∧ 10 ∈ ℝ+) → ((𝐵 / 10) < 1 ↔ 𝐵 < 10))
134, 11, 12mp2an 691 . . . . 5 ((𝐵 / 10) < 1 ↔ 𝐵 < 10)
146, 13mpbir 230 . . . 4 (𝐵 / 10) < 1
15 0re 11165 . . . . . . 7 0 ∈ ℝ
1615, 8gtneii 11275 . . . . . 6 10 ≠ 0
174, 7, 16redivcli 11930 . . . . 5 (𝐵 / 10) ∈ ℝ
18 1re 11163 . . . . 5 1 ∈ ℝ
19 nn0ssre 12425 . . . . . 6 0 ⊆ ℝ
2019, 1sselii 3945 . . . . 5 𝐴 ∈ ℝ
2117, 18, 20ltadd2i 11294 . . . 4 ((𝐵 / 10) < 1 ↔ (𝐴 + (𝐵 / 10)) < (𝐴 + 1))
2214, 21mpbi 229 . . 3 (𝐴 + (𝐵 / 10)) < (𝐴 + 1)
235, 22eqbrtri 5130 . 2 (𝐴.𝐵) < (𝐴 + 1)
24 dplti.2 . 2 (𝐴 + 1) = 𝐶
2523, 24breqtri 5134 1 (𝐴.𝐵) < 𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107   class class class wbr 5109  (class class class)co 7361  cr 11058  0cc0 11059  1c1 11060   + caddc 11062   < clt 11197   / cdiv 11820  0cn0 12421  cdc 12626  +crp 12923  .cdp 31800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-dec 12627  df-rp 12924  df-dp2 31784  df-dp 31801
This theorem is referenced by:  hgt750lem  33328
  Copyright terms: Public domain W3C validator