MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetcl Structured version   Visualization version   GIF version

Theorem meetcl 18350
Description: Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetcl.b 𝐵 = (Base‘𝐾)
meetcl.m = (meet‘𝐾)
meetcl.k (𝜑𝐾𝑉)
meetcl.x (𝜑𝑋𝐵)
meetcl.y (𝜑𝑌𝐵)
meetcl.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
meetcl (𝜑 → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem meetcl
StepHypRef Expression
1 eqid 2731 . . 3 (glb‘𝐾) = (glb‘𝐾)
2 meetcl.m . . 3 = (meet‘𝐾)
3 meetcl.k . . 3 (𝜑𝐾𝑉)
4 meetcl.x . . 3 (𝜑𝑋𝐵)
5 meetcl.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5meetval 18349 . 2 (𝜑 → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
7 meetcl.b . . 3 𝐵 = (Base‘𝐾)
8 meetcl.e . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
91, 2, 3, 4, 5meetdef 18348 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom (glb‘𝐾)))
108, 9mpbid 231 . . 3 (𝜑 → {𝑋, 𝑌} ∈ dom (glb‘𝐾))
117, 1, 3, 10glbcl 18328 . 2 (𝜑 → ((glb‘𝐾)‘{𝑋, 𝑌}) ∈ 𝐵)
126, 11eqeltrd 2832 1 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {cpr 4630  cop 4634  dom cdm 5676  cfv 6543  (class class class)co 7412  Basecbs 17149  glbcglb 18268  meetcmee 18270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-glb 18305  df-meet 18307
This theorem is referenced by:  meetle  18358  latlem  18395
  Copyright terms: Public domain W3C validator