![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > meetcl | Structured version Visualization version GIF version |
Description: Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
meetcl.b | ⊢ 𝐵 = (Base‘𝐾) |
meetcl.m | ⊢ ∧ = (meet‘𝐾) |
meetcl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
meetcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
meetcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
meetcl.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
Ref | Expression |
---|---|
meetcl | ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
2 | meetcl.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
3 | meetcl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
4 | meetcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | meetcl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | meetval 18461 | . 2 ⊢ (𝜑 → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
7 | meetcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
8 | meetcl.e | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
9 | 1, 2, 3, 4, 5 | meetdef 18460 | . . . 4 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom (glb‘𝐾))) |
10 | 8, 9 | mpbid 232 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ∈ dom (glb‘𝐾)) |
11 | 7, 1, 3, 10 | glbcl 18440 | . 2 ⊢ (𝜑 → ((glb‘𝐾)‘{𝑋, 𝑌}) ∈ 𝐵) |
12 | 6, 11 | eqeltrd 2844 | 1 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {cpr 4650 〈cop 4654 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 glbcglb 18380 meetcmee 18382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-glb 18417 df-meet 18419 |
This theorem is referenced by: meetle 18470 latlem 18507 |
Copyright terms: Public domain | W3C validator |