| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetcl | Structured version Visualization version GIF version | ||
| Description: Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| meetcl.m | ⊢ ∧ = (meet‘𝐾) |
| meetcl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| meetcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| meetcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| meetcl.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| Ref | Expression |
|---|---|
| meetcl | ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 2 | meetcl.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 3 | meetcl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 4 | meetcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | meetcl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | meetval 18401 | . 2 ⊢ (𝜑 → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
| 7 | meetcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | meetcl.e | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
| 9 | 1, 2, 3, 4, 5 | meetdef 18400 | . . . 4 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom (glb‘𝐾))) |
| 10 | 8, 9 | mpbid 232 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ∈ dom (glb‘𝐾)) |
| 11 | 7, 1, 3, 10 | glbcl 18380 | . 2 ⊢ (𝜑 → ((glb‘𝐾)‘{𝑋, 𝑌}) ∈ 𝐵) |
| 12 | 6, 11 | eqeltrd 2834 | 1 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {cpr 4603 〈cop 4607 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 glbcglb 18322 meetcmee 18324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-glb 18357 df-meet 18359 |
| This theorem is referenced by: meetle 18410 latlem 18447 |
| Copyright terms: Public domain | W3C validator |