MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetcl Structured version   Visualization version   GIF version

Theorem meetcl 18462
Description: Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
meetcl.b 𝐵 = (Base‘𝐾)
meetcl.m = (meet‘𝐾)
meetcl.k (𝜑𝐾𝑉)
meetcl.x (𝜑𝑋𝐵)
meetcl.y (𝜑𝑌𝐵)
meetcl.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
meetcl (𝜑 → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem meetcl
StepHypRef Expression
1 eqid 2740 . . 3 (glb‘𝐾) = (glb‘𝐾)
2 meetcl.m . . 3 = (meet‘𝐾)
3 meetcl.k . . 3 (𝜑𝐾𝑉)
4 meetcl.x . . 3 (𝜑𝑋𝐵)
5 meetcl.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5meetval 18461 . 2 (𝜑 → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
7 meetcl.b . . 3 𝐵 = (Base‘𝐾)
8 meetcl.e . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
91, 2, 3, 4, 5meetdef 18460 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom (glb‘𝐾)))
108, 9mpbid 232 . . 3 (𝜑 → {𝑋, 𝑌} ∈ dom (glb‘𝐾))
117, 1, 3, 10glbcl 18440 . 2 (𝜑 → ((glb‘𝐾)‘{𝑋, 𝑌}) ∈ 𝐵)
126, 11eqeltrd 2844 1 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cpr 4650  cop 4654  dom cdm 5700  cfv 6573  (class class class)co 7448  Basecbs 17258  glbcglb 18380  meetcmee 18382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-glb 18417  df-meet 18419
This theorem is referenced by:  meetle  18470  latlem  18507
  Copyright terms: Public domain W3C validator