| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetcl | Structured version Visualization version GIF version | ||
| Description: Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| meetcl.m | ⊢ ∧ = (meet‘𝐾) |
| meetcl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| meetcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| meetcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| meetcl.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
| Ref | Expression |
|---|---|
| meetcl | ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 2 | meetcl.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 3 | meetcl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 4 | meetcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | meetcl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | meetval 18295 | . 2 ⊢ (𝜑 → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
| 7 | meetcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | meetcl.e | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) | |
| 9 | 1, 2, 3, 4, 5 | meetdef 18294 | . . . 4 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom (glb‘𝐾))) |
| 10 | 8, 9 | mpbid 232 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ∈ dom (glb‘𝐾)) |
| 11 | 7, 1, 3, 10 | glbcl 18274 | . 2 ⊢ (𝜑 → ((glb‘𝐾)‘{𝑋, 𝑌}) ∈ 𝐵) |
| 12 | 6, 11 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cpr 4575 〈cop 4579 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 glbcglb 18216 meetcmee 18218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-glb 18251 df-meet 18253 |
| This theorem is referenced by: meetle 18304 latlem 18343 |
| Copyright terms: Public domain | W3C validator |