MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetdef Structured version   Visualization version   GIF version

Theorem meetdef 18460
Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
meetdef.u 𝐺 = (glb‘𝐾)
meetdef.m = (meet‘𝐾)
meetdef.k (𝜑𝐾𝑉)
meetdef.x (𝜑𝑋𝑊)
meetdef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
meetdef (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝐺))

Proof of Theorem meetdef
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meetdef.k . . 3 (𝜑𝐾𝑉)
2 meetdef.u . . . . 5 𝐺 = (glb‘𝐾)
3 meetdef.m . . . . 5 = (meet‘𝐾)
42, 3meetdm 18459 . . . 4 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺})
54eleq2d 2830 . . 3 (𝐾𝑉 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺}))
61, 5syl 17 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺}))
7 meetdef.x . . 3 (𝜑𝑋𝑊)
8 meetdef.y . . 3 (𝜑𝑌𝑍)
9 preq1 4758 . . . . 5 (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦})
109eleq1d 2829 . . . 4 (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑦} ∈ dom 𝐺))
11 preq2 4759 . . . . 5 (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌})
1211eleq1d 2829 . . . 4 (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺))
1310, 12opelopabg 5557 . . 3 ((𝑋𝑊𝑌𝑍) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺))
147, 8, 13syl2anc 583 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺))
156, 14bitrd 279 1 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {cpr 4650  cop 4654  {copab 5228  dom cdm 5700  cfv 6573  glbcglb 18380  meetcmee 18382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-oprab 7452  df-glb 18417  df-meet 18419
This theorem is referenced by:  meetval  18461  meetcl  18462  meetdmss  18463  meeteu  18466  clatl  18578  meetdm2  48650
  Copyright terms: Public domain W3C validator