Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > meetdef | Structured version Visualization version GIF version |
Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
meetdef.u | ⊢ 𝐺 = (glb‘𝐾) |
meetdef.m | ⊢ ∧ = (meet‘𝐾) |
meetdef.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
meetdef.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
meetdef.y | ⊢ (𝜑 → 𝑌 ∈ 𝑍) |
Ref | Expression |
---|---|
meetdef | ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meetdef.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
2 | meetdef.u | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
3 | meetdef.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
4 | 2, 3 | meetdm 18022 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) |
5 | 4 | eleq2d 2824 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺})) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺})) |
7 | meetdef.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
8 | meetdef.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑍) | |
9 | preq1 4666 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦}) | |
10 | 9 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑦} ∈ dom 𝐺)) |
11 | preq2 4667 | . . . . 5 ⊢ (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌}) | |
12 | 11 | eleq1d 2823 | . . . 4 ⊢ (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
13 | 10, 12 | opelopabg 5444 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑍) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
14 | 7, 8, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
15 | 6, 14 | bitrd 278 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cpr 4560 〈cop 4564 {copab 5132 dom cdm 5580 ‘cfv 6418 glbcglb 17943 meetcmee 17945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-oprab 7259 df-glb 17980 df-meet 17982 |
This theorem is referenced by: meetval 18024 meetcl 18025 meetdmss 18026 meeteu 18029 clatl 18141 meetdm2 46152 |
Copyright terms: Public domain | W3C validator |