![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > meetdef | Structured version Visualization version GIF version |
Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
meetdef.u | ⊢ 𝐺 = (glb‘𝐾) |
meetdef.m | ⊢ ∧ = (meet‘𝐾) |
meetdef.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
meetdef.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
meetdef.y | ⊢ (𝜑 → 𝑌 ∈ 𝑍) |
Ref | Expression |
---|---|
meetdef | ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meetdef.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
2 | meetdef.u | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
3 | meetdef.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
4 | 2, 3 | meetdm 18459 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) |
5 | 4 | eleq2d 2830 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺})) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺})) |
7 | meetdef.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
8 | meetdef.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑍) | |
9 | preq1 4758 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦}) | |
10 | 9 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑦} ∈ dom 𝐺)) |
11 | preq2 4759 | . . . . 5 ⊢ (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌}) | |
12 | 11 | eleq1d 2829 | . . . 4 ⊢ (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
13 | 10, 12 | opelopabg 5557 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑍) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
14 | 7, 8, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
15 | 6, 14 | bitrd 279 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cpr 4650 〈cop 4654 {copab 5228 dom cdm 5700 ‘cfv 6573 glbcglb 18380 meetcmee 18382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-oprab 7452 df-glb 18417 df-meet 18419 |
This theorem is referenced by: meetval 18461 meetcl 18462 meetdmss 18463 meeteu 18466 clatl 18578 meetdm2 48650 |
Copyright terms: Public domain | W3C validator |