MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetdef Structured version   Visualization version   GIF version

Theorem meetdef 18347
Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
meetdef.u 𝐺 = (glbβ€˜πΎ)
meetdef.m ∧ = (meetβ€˜πΎ)
meetdef.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
meetdef.x (πœ‘ β†’ 𝑋 ∈ π‘Š)
meetdef.y (πœ‘ β†’ π‘Œ ∈ 𝑍)
Assertion
Ref Expression
meetdef (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∧ ↔ {𝑋, π‘Œ} ∈ dom 𝐺))

Proof of Theorem meetdef
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meetdef.k . . 3 (πœ‘ β†’ 𝐾 ∈ 𝑉)
2 meetdef.u . . . . 5 𝐺 = (glbβ€˜πΎ)
3 meetdef.m . . . . 5 ∧ = (meetβ€˜πΎ)
42, 3meetdm 18346 . . . 4 (𝐾 ∈ 𝑉 β†’ dom ∧ = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom 𝐺})
54eleq2d 2819 . . 3 (𝐾 ∈ 𝑉 β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∧ ↔ βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom 𝐺}))
61, 5syl 17 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∧ ↔ βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom 𝐺}))
7 meetdef.x . . 3 (πœ‘ β†’ 𝑋 ∈ π‘Š)
8 meetdef.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑍)
9 preq1 4737 . . . . 5 (π‘₯ = 𝑋 β†’ {π‘₯, 𝑦} = {𝑋, 𝑦})
109eleq1d 2818 . . . 4 (π‘₯ = 𝑋 β†’ ({π‘₯, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑦} ∈ dom 𝐺))
11 preq2 4738 . . . . 5 (𝑦 = π‘Œ β†’ {𝑋, 𝑦} = {𝑋, π‘Œ})
1211eleq1d 2818 . . . 4 (𝑦 = π‘Œ β†’ ({𝑋, 𝑦} ∈ dom 𝐺 ↔ {𝑋, π‘Œ} ∈ dom 𝐺))
1310, 12opelopabg 5538 . . 3 ((𝑋 ∈ π‘Š ∧ π‘Œ ∈ 𝑍) β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom 𝐺} ↔ {𝑋, π‘Œ} ∈ dom 𝐺))
147, 8, 13syl2anc 584 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom 𝐺} ↔ {𝑋, π‘Œ} ∈ dom 𝐺))
156, 14bitrd 278 1 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∧ ↔ {𝑋, π‘Œ} ∈ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1541   ∈ wcel 2106  {cpr 4630  βŸ¨cop 4634  {copab 5210  dom cdm 5676  β€˜cfv 6543  glbcglb 18267  meetcmee 18269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-oprab 7415  df-glb 18304  df-meet 18306
This theorem is referenced by:  meetval  18348  meetcl  18349  meetdmss  18350  meeteu  18353  clatl  18465  meetdm2  47691
  Copyright terms: Public domain W3C validator