![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > meetdef | Structured version Visualization version GIF version |
Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
meetdef.u | β’ πΊ = (glbβπΎ) |
meetdef.m | β’ β§ = (meetβπΎ) |
meetdef.k | β’ (π β πΎ β π) |
meetdef.x | β’ (π β π β π) |
meetdef.y | β’ (π β π β π) |
Ref | Expression |
---|---|
meetdef | β’ (π β (β¨π, πβ© β dom β§ β {π, π} β dom πΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meetdef.k | . . 3 β’ (π β πΎ β π) | |
2 | meetdef.u | . . . . 5 β’ πΊ = (glbβπΎ) | |
3 | meetdef.m | . . . . 5 β’ β§ = (meetβπΎ) | |
4 | 2, 3 | meetdm 18346 | . . . 4 β’ (πΎ β π β dom β§ = {β¨π₯, π¦β© β£ {π₯, π¦} β dom πΊ}) |
5 | 4 | eleq2d 2819 | . . 3 β’ (πΎ β π β (β¨π, πβ© β dom β§ β β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom πΊ})) |
6 | 1, 5 | syl 17 | . 2 β’ (π β (β¨π, πβ© β dom β§ β β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom πΊ})) |
7 | meetdef.x | . . 3 β’ (π β π β π) | |
8 | meetdef.y | . . 3 β’ (π β π β π) | |
9 | preq1 4737 | . . . . 5 β’ (π₯ = π β {π₯, π¦} = {π, π¦}) | |
10 | 9 | eleq1d 2818 | . . . 4 β’ (π₯ = π β ({π₯, π¦} β dom πΊ β {π, π¦} β dom πΊ)) |
11 | preq2 4738 | . . . . 5 β’ (π¦ = π β {π, π¦} = {π, π}) | |
12 | 11 | eleq1d 2818 | . . . 4 β’ (π¦ = π β ({π, π¦} β dom πΊ β {π, π} β dom πΊ)) |
13 | 10, 12 | opelopabg 5538 | . . 3 β’ ((π β π β§ π β π) β (β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom πΊ} β {π, π} β dom πΊ)) |
14 | 7, 8, 13 | syl2anc 584 | . 2 β’ (π β (β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom πΊ} β {π, π} β dom πΊ)) |
15 | 6, 14 | bitrd 278 | 1 β’ (π β (β¨π, πβ© β dom β§ β {π, π} β dom πΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 {cpr 4630 β¨cop 4634 {copab 5210 dom cdm 5676 βcfv 6543 glbcglb 18267 meetcmee 18269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-oprab 7415 df-glb 18304 df-meet 18306 |
This theorem is referenced by: meetval 18348 meetcl 18349 meetdmss 18350 meeteu 18353 clatl 18465 meetdm2 47691 |
Copyright terms: Public domain | W3C validator |