| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetdef | Structured version Visualization version GIF version | ||
| Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetdef.u | ⊢ 𝐺 = (glb‘𝐾) |
| meetdef.m | ⊢ ∧ = (meet‘𝐾) |
| meetdef.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| meetdef.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| meetdef.y | ⊢ (𝜑 → 𝑌 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| meetdef | ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetdef.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 2 | meetdef.u | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
| 3 | meetdef.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 4 | 2, 3 | meetdm 18348 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) |
| 5 | 4 | eleq2d 2814 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺})) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺})) |
| 7 | meetdef.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
| 8 | meetdef.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑍) | |
| 9 | preq1 4697 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦}) | |
| 10 | 9 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑦} ∈ dom 𝐺)) |
| 11 | preq2 4698 | . . . . 5 ⊢ (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌}) | |
| 12 | 11 | eleq1d 2813 | . . . 4 ⊢ (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
| 13 | 10, 12 | opelopabg 5498 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑍) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
| 14 | 7, 8, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
| 15 | 6, 14 | bitrd 279 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cpr 4591 〈cop 4595 {copab 5169 dom cdm 5638 ‘cfv 6511 glbcglb 18271 meetcmee 18273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-oprab 7391 df-glb 18306 df-meet 18308 |
| This theorem is referenced by: meetval 18350 meetcl 18351 meetdmss 18352 meeteu 18355 clatl 18467 meetdm2 48958 |
| Copyright terms: Public domain | W3C validator |