MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetdef Structured version   Visualization version   GIF version

Theorem meetdef 18023
Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
meetdef.u 𝐺 = (glb‘𝐾)
meetdef.m = (meet‘𝐾)
meetdef.k (𝜑𝐾𝑉)
meetdef.x (𝜑𝑋𝑊)
meetdef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
meetdef (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝐺))

Proof of Theorem meetdef
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meetdef.k . . 3 (𝜑𝐾𝑉)
2 meetdef.u . . . . 5 𝐺 = (glb‘𝐾)
3 meetdef.m . . . . 5 = (meet‘𝐾)
42, 3meetdm 18022 . . . 4 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺})
54eleq2d 2824 . . 3 (𝐾𝑉 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺}))
61, 5syl 17 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺}))
7 meetdef.x . . 3 (𝜑𝑋𝑊)
8 meetdef.y . . 3 (𝜑𝑌𝑍)
9 preq1 4666 . . . . 5 (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦})
109eleq1d 2823 . . . 4 (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑦} ∈ dom 𝐺))
11 preq2 4667 . . . . 5 (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌})
1211eleq1d 2823 . . . 4 (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺))
1310, 12opelopabg 5444 . . 3 ((𝑋𝑊𝑌𝑍) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺))
147, 8, 13syl2anc 583 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺))
156, 14bitrd 278 1 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  {cpr 4560  cop 4564  {copab 5132  dom cdm 5580  cfv 6418  glbcglb 17943  meetcmee 17945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-oprab 7259  df-glb 17980  df-meet 17982
This theorem is referenced by:  meetval  18024  meetcl  18025  meetdmss  18026  meeteu  18029  clatl  18141  meetdm2  46152
  Copyright terms: Public domain W3C validator