![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > meetdef | Structured version Visualization version GIF version |
Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
meetdef.u | ⊢ 𝐺 = (glb‘𝐾) |
meetdef.m | ⊢ ∧ = (meet‘𝐾) |
meetdef.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
meetdef.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
meetdef.y | ⊢ (𝜑 → 𝑌 ∈ 𝑍) |
Ref | Expression |
---|---|
meetdef | ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meetdef.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
2 | meetdef.u | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
3 | meetdef.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
4 | 2, 3 | meetdm 17497 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) |
5 | 4 | eleq2d 2844 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺})) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺})) |
7 | meetdef.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
8 | meetdef.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑍) | |
9 | preq1 4539 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦}) | |
10 | 9 | eleq1d 2843 | . . . 4 ⊢ (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑦} ∈ dom 𝐺)) |
11 | preq2 4540 | . . . . 5 ⊢ (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌}) | |
12 | 11 | eleq1d 2843 | . . . 4 ⊢ (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
13 | 10, 12 | opelopabg 5275 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑍) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
14 | 7, 8, 13 | syl2anc 576 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
15 | 6, 14 | bitrd 271 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1508 ∈ wcel 2051 {cpr 4437 〈cop 4441 {copab 4987 dom cdm 5403 ‘cfv 6185 glbcglb 17423 meetcmee 17425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-oprab 6978 df-glb 17455 df-meet 17457 |
This theorem is referenced by: meetval 17499 meetcl 17500 meetdmss 17501 meeteu 17504 clatl 17596 |
Copyright terms: Public domain | W3C validator |