MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mireq Structured version   Visualization version   GIF version

Theorem mireq 25976
Description: Equality deduction for point inversion. Theorem 7.9 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
mireq.c (𝜑𝐶𝑃)
mireq.d (𝜑 → (𝑀𝐵) = (𝑀𝐶))
Assertion
Ref Expression
mireq (𝜑𝐵 = 𝐶)

Proof of Theorem mireq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mireq.c . . . 4 (𝜑𝐶𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 25972 . . 3 (𝜑 → (𝑀𝐶) ∈ 𝑃)
11 mirmir.b . . 3 (𝜑𝐵𝑃)
121, 2, 3, 4, 5, 6, 7, 8, 11mirfv 25967 . . . . . . 7 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
13 mireq.d . . . . . . 7 (𝜑 → (𝑀𝐵) = (𝑀𝐶))
1412, 13eqtr3d 2862 . . . . . 6 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶))
151, 2, 3, 6, 11, 7mirreu3 25965 . . . . . . 7 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
16 oveq2 6912 . . . . . . . . . 10 (𝑧 = (𝑀𝐶) → (𝐴 𝑧) = (𝐴 (𝑀𝐶)))
1716eqeq1d 2826 . . . . . . . . 9 (𝑧 = (𝑀𝐶) → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 (𝑀𝐶)) = (𝐴 𝐵)))
18 oveq1 6911 . . . . . . . . . 10 (𝑧 = (𝑀𝐶) → (𝑧𝐼𝐵) = ((𝑀𝐶)𝐼𝐵))
1918eleq2d 2891 . . . . . . . . 9 (𝑧 = (𝑀𝐶) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)))
2017, 19anbi12d 626 . . . . . . . 8 (𝑧 = (𝑀𝐶) → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵))))
2120riota2 6887 . . . . . . 7 (((𝑀𝐶) ∈ 𝑃 ∧ ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶)))
2210, 15, 21syl2anc 581 . . . . . 6 (𝜑 → (((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶)))
2314, 22mpbird 249 . . . . 5 (𝜑 → ((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)))
2423simpld 490 . . . 4 (𝜑 → (𝐴 (𝑀𝐶)) = (𝐴 𝐵))
2524eqcomd 2830 . . 3 (𝜑 → (𝐴 𝐵) = (𝐴 (𝑀𝐶)))
2623simprd 491 . . . 4 (𝜑𝐴 ∈ ((𝑀𝐶)𝐼𝐵))
271, 2, 3, 6, 10, 7, 11, 26tgbtwncom 25799 . . 3 (𝜑𝐴 ∈ (𝐵𝐼(𝑀𝐶)))
281, 2, 3, 4, 5, 6, 7, 8, 10, 11, 25, 27ismir 25970 . 2 (𝜑𝐵 = (𝑀‘(𝑀𝐶)))
291, 2, 3, 4, 5, 6, 7, 8, 9mirmir 25973 . 2 (𝜑 → (𝑀‘(𝑀𝐶)) = 𝐶)
3028, 29eqtrd 2860 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  ∃!wreu 3118  cfv 6122  crio 6864  (class class class)co 6904  Basecbs 16221  distcds 16313  TarskiGcstrkg 25741  Itvcitv 25747  LineGclng 25748  pInvGcmir 25963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pr 5126
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-trkgc 25759  df-trkgb 25760  df-trkgcb 25761  df-trkg 25764  df-mir 25964
This theorem is referenced by:  mirhl  25990  mirbtwnhl  25991  mirhl2  25992  colperpexlem3  26040
  Copyright terms: Public domain W3C validator