MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mireq Structured version   Visualization version   GIF version

Theorem mireq 28184
Description: Equality deduction for point inversion. Theorem 7.9 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Baseβ€˜πΊ)
mirval.d βˆ’ = (distβ€˜πΊ)
mirval.i 𝐼 = (Itvβ€˜πΊ)
mirval.l 𝐿 = (LineGβ€˜πΊ)
mirval.s 𝑆 = (pInvGβ€˜πΊ)
mirval.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
mirval.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
mirfv.m 𝑀 = (π‘†β€˜π΄)
mirmir.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
mireq.c (πœ‘ β†’ 𝐢 ∈ 𝑃)
mireq.d (πœ‘ β†’ (π‘€β€˜π΅) = (π‘€β€˜πΆ))
Assertion
Ref Expression
mireq (πœ‘ β†’ 𝐡 = 𝐢)

Proof of Theorem mireq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Baseβ€˜πΊ)
2 mirval.d . . 3 βˆ’ = (distβ€˜πΊ)
3 mirval.i . . 3 𝐼 = (Itvβ€˜πΊ)
4 mirval.l . . 3 𝐿 = (LineGβ€˜πΊ)
5 mirval.s . . 3 𝑆 = (pInvGβ€˜πΊ)
6 mirval.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
7 mirval.a . . 3 (πœ‘ β†’ 𝐴 ∈ 𝑃)
8 mirfv.m . . 3 𝑀 = (π‘†β€˜π΄)
9 mireq.c . . . 4 (πœ‘ β†’ 𝐢 ∈ 𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 28180 . . 3 (πœ‘ β†’ (π‘€β€˜πΆ) ∈ 𝑃)
11 mirmir.b . . 3 (πœ‘ β†’ 𝐡 ∈ 𝑃)
121, 2, 3, 4, 5, 6, 7, 8, 11mirfv 28175 . . . . . . 7 (πœ‘ β†’ (π‘€β€˜π΅) = (℩𝑧 ∈ 𝑃 ((𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ (𝑧𝐼𝐡))))
13 mireq.d . . . . . . 7 (πœ‘ β†’ (π‘€β€˜π΅) = (π‘€β€˜πΆ))
1412, 13eqtr3d 2773 . . . . . 6 (πœ‘ β†’ (℩𝑧 ∈ 𝑃 ((𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ (𝑧𝐼𝐡))) = (π‘€β€˜πΆ))
151, 2, 3, 6, 11, 7mirreu3 28173 . . . . . . 7 (πœ‘ β†’ βˆƒ!𝑧 ∈ 𝑃 ((𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ (𝑧𝐼𝐡)))
16 oveq2 7420 . . . . . . . . . 10 (𝑧 = (π‘€β€˜πΆ) β†’ (𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ (π‘€β€˜πΆ)))
1716eqeq1d 2733 . . . . . . . . 9 (𝑧 = (π‘€β€˜πΆ) β†’ ((𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡) ↔ (𝐴 βˆ’ (π‘€β€˜πΆ)) = (𝐴 βˆ’ 𝐡)))
18 oveq1 7419 . . . . . . . . . 10 (𝑧 = (π‘€β€˜πΆ) β†’ (𝑧𝐼𝐡) = ((π‘€β€˜πΆ)𝐼𝐡))
1918eleq2d 2818 . . . . . . . . 9 (𝑧 = (π‘€β€˜πΆ) β†’ (𝐴 ∈ (𝑧𝐼𝐡) ↔ 𝐴 ∈ ((π‘€β€˜πΆ)𝐼𝐡)))
2017, 19anbi12d 630 . . . . . . . 8 (𝑧 = (π‘€β€˜πΆ) β†’ (((𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ (𝑧𝐼𝐡)) ↔ ((𝐴 βˆ’ (π‘€β€˜πΆ)) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ ((π‘€β€˜πΆ)𝐼𝐡))))
2120riota2 7394 . . . . . . 7 (((π‘€β€˜πΆ) ∈ 𝑃 ∧ βˆƒ!𝑧 ∈ 𝑃 ((𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ (𝑧𝐼𝐡))) β†’ (((𝐴 βˆ’ (π‘€β€˜πΆ)) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ ((π‘€β€˜πΆ)𝐼𝐡)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ (𝑧𝐼𝐡))) = (π‘€β€˜πΆ)))
2210, 15, 21syl2anc 583 . . . . . 6 (πœ‘ β†’ (((𝐴 βˆ’ (π‘€β€˜πΆ)) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ ((π‘€β€˜πΆ)𝐼𝐡)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 βˆ’ 𝑧) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ (𝑧𝐼𝐡))) = (π‘€β€˜πΆ)))
2314, 22mpbird 257 . . . . 5 (πœ‘ β†’ ((𝐴 βˆ’ (π‘€β€˜πΆ)) = (𝐴 βˆ’ 𝐡) ∧ 𝐴 ∈ ((π‘€β€˜πΆ)𝐼𝐡)))
2423simpld 494 . . . 4 (πœ‘ β†’ (𝐴 βˆ’ (π‘€β€˜πΆ)) = (𝐴 βˆ’ 𝐡))
2524eqcomd 2737 . . 3 (πœ‘ β†’ (𝐴 βˆ’ 𝐡) = (𝐴 βˆ’ (π‘€β€˜πΆ)))
2623simprd 495 . . . 4 (πœ‘ β†’ 𝐴 ∈ ((π‘€β€˜πΆ)𝐼𝐡))
271, 2, 3, 6, 10, 7, 11, 26tgbtwncom 28007 . . 3 (πœ‘ β†’ 𝐴 ∈ (𝐡𝐼(π‘€β€˜πΆ)))
281, 2, 3, 4, 5, 6, 7, 8, 10, 11, 25, 27ismir 28178 . 2 (πœ‘ β†’ 𝐡 = (π‘€β€˜(π‘€β€˜πΆ)))
291, 2, 3, 4, 5, 6, 7, 8, 9mirmir 28181 . 2 (πœ‘ β†’ (π‘€β€˜(π‘€β€˜πΆ)) = 𝐢)
3028, 29eqtrd 2771 1 (πœ‘ β†’ 𝐡 = 𝐢)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆƒ!wreu 3373  β€˜cfv 6543  β„©crio 7367  (class class class)co 7412  Basecbs 17149  distcds 17211  TarskiGcstrkg 27946  Itvcitv 27952  LineGclng 27953  pInvGcmir 28171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-trkgc 27967  df-trkgb 27968  df-trkgcb 27969  df-trkg 27972  df-mir 28172
This theorem is referenced by:  mirhl  28198  mirbtwnhl  28199  colperpexlem3  28251
  Copyright terms: Public domain W3C validator