MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mireq Structured version   Visualization version   GIF version

Theorem mireq 26614
Description: Equality deduction for point inversion. Theorem 7.9 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
mireq.c (𝜑𝐶𝑃)
mireq.d (𝜑 → (𝑀𝐵) = (𝑀𝐶))
Assertion
Ref Expression
mireq (𝜑𝐵 = 𝐶)

Proof of Theorem mireq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mireq.c . . . 4 (𝜑𝐶𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 26610 . . 3 (𝜑 → (𝑀𝐶) ∈ 𝑃)
11 mirmir.b . . 3 (𝜑𝐵𝑃)
121, 2, 3, 4, 5, 6, 7, 8, 11mirfv 26605 . . . . . . 7 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
13 mireq.d . . . . . . 7 (𝜑 → (𝑀𝐵) = (𝑀𝐶))
1412, 13eqtr3d 2776 . . . . . 6 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶))
151, 2, 3, 6, 11, 7mirreu3 26603 . . . . . . 7 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
16 oveq2 7181 . . . . . . . . . 10 (𝑧 = (𝑀𝐶) → (𝐴 𝑧) = (𝐴 (𝑀𝐶)))
1716eqeq1d 2741 . . . . . . . . 9 (𝑧 = (𝑀𝐶) → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 (𝑀𝐶)) = (𝐴 𝐵)))
18 oveq1 7180 . . . . . . . . . 10 (𝑧 = (𝑀𝐶) → (𝑧𝐼𝐵) = ((𝑀𝐶)𝐼𝐵))
1918eleq2d 2819 . . . . . . . . 9 (𝑧 = (𝑀𝐶) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)))
2017, 19anbi12d 634 . . . . . . . 8 (𝑧 = (𝑀𝐶) → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵))))
2120riota2 7156 . . . . . . 7 (((𝑀𝐶) ∈ 𝑃 ∧ ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶)))
2210, 15, 21syl2anc 587 . . . . . 6 (𝜑 → (((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶)))
2314, 22mpbird 260 . . . . 5 (𝜑 → ((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)))
2423simpld 498 . . . 4 (𝜑 → (𝐴 (𝑀𝐶)) = (𝐴 𝐵))
2524eqcomd 2745 . . 3 (𝜑 → (𝐴 𝐵) = (𝐴 (𝑀𝐶)))
2623simprd 499 . . . 4 (𝜑𝐴 ∈ ((𝑀𝐶)𝐼𝐵))
271, 2, 3, 6, 10, 7, 11, 26tgbtwncom 26437 . . 3 (𝜑𝐴 ∈ (𝐵𝐼(𝑀𝐶)))
281, 2, 3, 4, 5, 6, 7, 8, 10, 11, 25, 27ismir 26608 . 2 (𝜑𝐵 = (𝑀‘(𝑀𝐶)))
291, 2, 3, 4, 5, 6, 7, 8, 9mirmir 26611 . 2 (𝜑 → (𝑀‘(𝑀𝐶)) = 𝐶)
3028, 29eqtrd 2774 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  ∃!wreu 3056  cfv 6340  crio 7129  (class class class)co 7173  Basecbs 16589  distcds 16680  TarskiGcstrkg 26379  Itvcitv 26385  LineGclng 26386  pInvGcmir 26601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-trkgc 26397  df-trkgb 26398  df-trkgcb 26399  df-trkg 26402  df-mir 26602
This theorem is referenced by:  mirhl  26628  mirbtwnhl  26629  colperpexlem3  26681
  Copyright terms: Public domain W3C validator