MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mireq Structured version   Visualization version   GIF version

Theorem mireq 26930
Description: Equality deduction for point inversion. Theorem 7.9 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
mireq.c (𝜑𝐶𝑃)
mireq.d (𝜑 → (𝑀𝐵) = (𝑀𝐶))
Assertion
Ref Expression
mireq (𝜑𝐵 = 𝐶)

Proof of Theorem mireq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mireq.c . . . 4 (𝜑𝐶𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 26926 . . 3 (𝜑 → (𝑀𝐶) ∈ 𝑃)
11 mirmir.b . . 3 (𝜑𝐵𝑃)
121, 2, 3, 4, 5, 6, 7, 8, 11mirfv 26921 . . . . . . 7 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
13 mireq.d . . . . . . 7 (𝜑 → (𝑀𝐵) = (𝑀𝐶))
1412, 13eqtr3d 2780 . . . . . 6 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶))
151, 2, 3, 6, 11, 7mirreu3 26919 . . . . . . 7 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
16 oveq2 7263 . . . . . . . . . 10 (𝑧 = (𝑀𝐶) → (𝐴 𝑧) = (𝐴 (𝑀𝐶)))
1716eqeq1d 2740 . . . . . . . . 9 (𝑧 = (𝑀𝐶) → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 (𝑀𝐶)) = (𝐴 𝐵)))
18 oveq1 7262 . . . . . . . . . 10 (𝑧 = (𝑀𝐶) → (𝑧𝐼𝐵) = ((𝑀𝐶)𝐼𝐵))
1918eleq2d 2824 . . . . . . . . 9 (𝑧 = (𝑀𝐶) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)))
2017, 19anbi12d 630 . . . . . . . 8 (𝑧 = (𝑀𝐶) → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵))))
2120riota2 7238 . . . . . . 7 (((𝑀𝐶) ∈ 𝑃 ∧ ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶)))
2210, 15, 21syl2anc 583 . . . . . 6 (𝜑 → (((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀𝐶)))
2314, 22mpbird 256 . . . . 5 (𝜑 → ((𝐴 (𝑀𝐶)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐶)𝐼𝐵)))
2423simpld 494 . . . 4 (𝜑 → (𝐴 (𝑀𝐶)) = (𝐴 𝐵))
2524eqcomd 2744 . . 3 (𝜑 → (𝐴 𝐵) = (𝐴 (𝑀𝐶)))
2623simprd 495 . . . 4 (𝜑𝐴 ∈ ((𝑀𝐶)𝐼𝐵))
271, 2, 3, 6, 10, 7, 11, 26tgbtwncom 26753 . . 3 (𝜑𝐴 ∈ (𝐵𝐼(𝑀𝐶)))
281, 2, 3, 4, 5, 6, 7, 8, 10, 11, 25, 27ismir 26924 . 2 (𝜑𝐵 = (𝑀‘(𝑀𝐶)))
291, 2, 3, 4, 5, 6, 7, 8, 9mirmir 26927 . 2 (𝜑 → (𝑀‘(𝑀𝐶)) = 𝐶)
3028, 29eqtrd 2778 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ∃!wreu 3065  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-mir 26918
This theorem is referenced by:  mirhl  26944  mirbtwnhl  26945  colperpexlem3  26997
  Copyright terms: Public domain W3C validator