![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mireq | Structured version Visualization version GIF version |
Description: Equality deduction for point inversion. Theorem 7.9 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-May-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mireq.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
mireq.d | ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘𝐶)) |
Ref | Expression |
---|---|
mireq | ⊢ (𝜑 → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | mireq.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 25972 | . . 3 ⊢ (𝜑 → (𝑀‘𝐶) ∈ 𝑃) |
11 | mirmir.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | mirfv 25967 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
13 | mireq.d | . . . . . . 7 ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘𝐶)) | |
14 | 12, 13 | eqtr3d 2862 | . . . . . 6 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀‘𝐶)) |
15 | 1, 2, 3, 6, 11, 7 | mirreu3 25965 | . . . . . . 7 ⊢ (𝜑 → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) |
16 | oveq2 6912 | . . . . . . . . . 10 ⊢ (𝑧 = (𝑀‘𝐶) → (𝐴 − 𝑧) = (𝐴 − (𝑀‘𝐶))) | |
17 | 16 | eqeq1d 2826 | . . . . . . . . 9 ⊢ (𝑧 = (𝑀‘𝐶) → ((𝐴 − 𝑧) = (𝐴 − 𝐵) ↔ (𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵))) |
18 | oveq1 6911 | . . . . . . . . . 10 ⊢ (𝑧 = (𝑀‘𝐶) → (𝑧𝐼𝐵) = ((𝑀‘𝐶)𝐼𝐵)) | |
19 | 18 | eleq2d 2891 | . . . . . . . . 9 ⊢ (𝑧 = (𝑀‘𝐶) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵))) |
20 | 17, 19 | anbi12d 626 | . . . . . . . 8 ⊢ (𝑧 = (𝑀‘𝐶) → (((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵)))) |
21 | 20 | riota2 6887 | . . . . . . 7 ⊢ (((𝑀‘𝐶) ∈ 𝑃 ∧ ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀‘𝐶))) |
22 | 10, 15, 21 | syl2anc 581 | . . . . . 6 ⊢ (𝜑 → (((𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀‘𝐶))) |
23 | 14, 22 | mpbird 249 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵))) |
24 | 23 | simpld 490 | . . . 4 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵)) |
25 | 24 | eqcomd 2830 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − (𝑀‘𝐶))) |
26 | 23 | simprd 491 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵)) |
27 | 1, 2, 3, 6, 10, 7, 11, 26 | tgbtwncom 25799 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼(𝑀‘𝐶))) |
28 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 25, 27 | ismir 25970 | . 2 ⊢ (𝜑 → 𝐵 = (𝑀‘(𝑀‘𝐶))) |
29 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirmir 25973 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐶)) = 𝐶) |
30 | 28, 29 | eqtrd 2860 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∃!wreu 3118 ‘cfv 6122 ℩crio 6864 (class class class)co 6904 Basecbs 16221 distcds 16313 TarskiGcstrkg 25741 Itvcitv 25747 LineGclng 25748 pInvGcmir 25963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-trkgc 25759 df-trkgb 25760 df-trkgcb 25761 df-trkg 25764 df-mir 25964 |
This theorem is referenced by: mirhl 25990 mirbtwnhl 25991 mirhl2 25992 colperpexlem3 26040 |
Copyright terms: Public domain | W3C validator |