Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mireq | Structured version Visualization version GIF version |
Description: Equality deduction for point inversion. Theorem 7.9 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 30-May-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mireq.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
mireq.d | ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘𝐶)) |
Ref | Expression |
---|---|
mireq | ⊢ (𝜑 → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | mireq.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 26610 | . . 3 ⊢ (𝜑 → (𝑀‘𝐶) ∈ 𝑃) |
11 | mirmir.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | mirfv 26605 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
13 | mireq.d | . . . . . . 7 ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘𝐶)) | |
14 | 12, 13 | eqtr3d 2776 | . . . . . 6 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀‘𝐶)) |
15 | 1, 2, 3, 6, 11, 7 | mirreu3 26603 | . . . . . . 7 ⊢ (𝜑 → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) |
16 | oveq2 7181 | . . . . . . . . . 10 ⊢ (𝑧 = (𝑀‘𝐶) → (𝐴 − 𝑧) = (𝐴 − (𝑀‘𝐶))) | |
17 | 16 | eqeq1d 2741 | . . . . . . . . 9 ⊢ (𝑧 = (𝑀‘𝐶) → ((𝐴 − 𝑧) = (𝐴 − 𝐵) ↔ (𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵))) |
18 | oveq1 7180 | . . . . . . . . . 10 ⊢ (𝑧 = (𝑀‘𝐶) → (𝑧𝐼𝐵) = ((𝑀‘𝐶)𝐼𝐵)) | |
19 | 18 | eleq2d 2819 | . . . . . . . . 9 ⊢ (𝑧 = (𝑀‘𝐶) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵))) |
20 | 17, 19 | anbi12d 634 | . . . . . . . 8 ⊢ (𝑧 = (𝑀‘𝐶) → (((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵)))) |
21 | 20 | riota2 7156 | . . . . . . 7 ⊢ (((𝑀‘𝐶) ∈ 𝑃 ∧ ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀‘𝐶))) |
22 | 10, 15, 21 | syl2anc 587 | . . . . . 6 ⊢ (𝜑 → (((𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵)) ↔ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = (𝑀‘𝐶))) |
23 | 14, 22 | mpbird 260 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵) ∧ 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵))) |
24 | 23 | simpld 498 | . . . 4 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐶)) = (𝐴 − 𝐵)) |
25 | 24 | eqcomd 2745 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − (𝑀‘𝐶))) |
26 | 23 | simprd 499 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ((𝑀‘𝐶)𝐼𝐵)) |
27 | 1, 2, 3, 6, 10, 7, 11, 26 | tgbtwncom 26437 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼(𝑀‘𝐶))) |
28 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 25, 27 | ismir 26608 | . 2 ⊢ (𝜑 → 𝐵 = (𝑀‘(𝑀‘𝐶))) |
29 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirmir 26611 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐶)) = 𝐶) |
30 | 28, 29 | eqtrd 2774 | 1 ⊢ (𝜑 → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∃!wreu 3056 ‘cfv 6340 ℩crio 7129 (class class class)co 7173 Basecbs 16589 distcds 16680 TarskiGcstrkg 26379 Itvcitv 26385 LineGclng 26386 pInvGcmir 26601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-trkgc 26397 df-trkgb 26398 df-trkgcb 26399 df-trkg 26402 df-mir 26602 |
This theorem is referenced by: mirhl 26628 mirbtwnhl 26629 colperpexlem3 26681 |
Copyright terms: Public domain | W3C validator |