| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > monhom | Structured version Visualization version GIF version | ||
| Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| ismon.b | ⊢ 𝐵 = (Base‘𝐶) |
| ismon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| ismon.o | ⊢ · = (comp‘𝐶) |
| ismon.s | ⊢ 𝑀 = (Mono‘𝐶) |
| ismon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| ismon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ismon.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| monhom | ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismon.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | ismon.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | ismon.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 4 | ismon.s | . . . 4 ⊢ 𝑀 = (Mono‘𝐶) | |
| 5 | ismon.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | ismon.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | ismon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ismon 17646 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(〈𝑧, 𝑋〉 · 𝑌)𝑔))))) |
| 9 | simpl 482 | . . 3 ⊢ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(〈𝑧, 𝑋〉 · 𝑌)𝑔))) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 10 | 8, 9 | biimtrdi 253 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) → 𝑓 ∈ (𝑋𝐻𝑌))) |
| 11 | 10 | ssrdv 3935 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 〈cop 4581 ↦ cmpt 5174 ◡ccnv 5618 Fun wfun 6481 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 Hom chom 17178 compcco 17179 Catccat 17576 Monocmon 17641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-mon 17643 |
| This theorem is referenced by: setcmon 18000 |
| Copyright terms: Public domain | W3C validator |