MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monhom Structured version   Visualization version   GIF version

Theorem monhom 16875
Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
Assertion
Ref Expression
monhom (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌))

Proof of Theorem monhom
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.b . . . 4 𝐵 = (Base‘𝐶)
2 ismon.h . . . 4 𝐻 = (Hom ‘𝐶)
3 ismon.o . . . 4 · = (comp‘𝐶)
4 ismon.s . . . 4 𝑀 = (Mono‘𝐶)
5 ismon.c . . . 4 (𝜑𝐶 ∈ Cat)
6 ismon.x . . . 4 (𝜑𝑋𝐵)
7 ismon.y . . . 4 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7ismon 16873 . . 3 (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)))))
9 simpl 475 . . 3 ((𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))) → 𝑓 ∈ (𝑋𝐻𝑌))
108, 9syl6bi 245 . 2 (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) → 𝑓 ∈ (𝑋𝐻𝑌)))
1110ssrdv 3866 1 (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  wral 3090  wss 3831  cop 4450  cmpt 5013  ccnv 5410  Fun wfun 6187  cfv 6193  (class class class)co 6982  Basecbs 16345  Hom chom 16438  compcco 16439  Catccat 16805  Monocmon 16868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-id 5316  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-ov 6985  df-oprab 6986  df-mpo 6987  df-1st 7507  df-2nd 7508  df-mon 16870
This theorem is referenced by:  setcmon  17217
  Copyright terms: Public domain W3C validator