Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > monhom | Structured version Visualization version GIF version |
Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
ismon.b | ⊢ 𝐵 = (Base‘𝐶) |
ismon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
ismon.o | ⊢ · = (comp‘𝐶) |
ismon.s | ⊢ 𝑀 = (Mono‘𝐶) |
ismon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
ismon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ismon.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
monhom | ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismon.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | ismon.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | ismon.o | . . . 4 ⊢ · = (comp‘𝐶) | |
4 | ismon.s | . . . 4 ⊢ 𝑀 = (Mono‘𝐶) | |
5 | ismon.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
6 | ismon.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | ismon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismon 17067 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(〈𝑧, 𝑋〉 · 𝑌)𝑔))))) |
9 | simpl 486 | . . 3 ⊢ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(〈𝑧, 𝑋〉 · 𝑌)𝑔))) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
10 | 8, 9 | syl6bi 256 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) → 𝑓 ∈ (𝑋𝐻𝑌))) |
11 | 10 | ssrdv 3900 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⊆ wss 3860 〈cop 4531 ↦ cmpt 5115 ◡ccnv 5526 Fun wfun 6333 ‘cfv 6339 (class class class)co 7155 Basecbs 16546 Hom chom 16639 compcco 16640 Catccat 16998 Monocmon 17062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-mon 17064 |
This theorem is referenced by: setcmon 17418 |
Copyright terms: Public domain | W3C validator |