![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > monhom | Structured version Visualization version GIF version |
Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
ismon.b | ⊢ 𝐵 = (Base‘𝐶) |
ismon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
ismon.o | ⊢ · = (comp‘𝐶) |
ismon.s | ⊢ 𝑀 = (Mono‘𝐶) |
ismon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
ismon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ismon.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
monhom | ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismon.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | ismon.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | ismon.o | . . . 4 ⊢ · = (comp‘𝐶) | |
4 | ismon.s | . . . 4 ⊢ 𝑀 = (Mono‘𝐶) | |
5 | ismon.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
6 | ismon.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | ismon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismon 17790 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(〈𝑧, 𝑋〉 · 𝑌)𝑔))))) |
9 | simpl 482 | . . 3 ⊢ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(〈𝑧, 𝑋〉 · 𝑌)𝑔))) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
10 | 8, 9 | biimtrdi 253 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) → 𝑓 ∈ (𝑋𝐻𝑌))) |
11 | 10 | ssrdv 4004 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3966 〈cop 4640 ↦ cmpt 5234 ◡ccnv 5692 Fun wfun 6563 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Hom chom 17318 compcco 17319 Catccat 17718 Monocmon 17785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-mon 17787 |
This theorem is referenced by: setcmon 18150 |
Copyright terms: Public domain | W3C validator |