![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > monhom | Structured version Visualization version GIF version |
Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
ismon.b | ⊢ 𝐵 = (Base‘𝐶) |
ismon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
ismon.o | ⊢ · = (comp‘𝐶) |
ismon.s | ⊢ 𝑀 = (Mono‘𝐶) |
ismon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
ismon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ismon.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
monhom | ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismon.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | ismon.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | ismon.o | . . . 4 ⊢ · = (comp‘𝐶) | |
4 | ismon.s | . . . 4 ⊢ 𝑀 = (Mono‘𝐶) | |
5 | ismon.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
6 | ismon.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | ismon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismon 17796 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(〈𝑧, 𝑋〉 · 𝑌)𝑔))))) |
9 | simpl 482 | . . 3 ⊢ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(〈𝑧, 𝑋〉 · 𝑌)𝑔))) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
10 | 8, 9 | biimtrdi 253 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) → 𝑓 ∈ (𝑋𝐻𝑌))) |
11 | 10 | ssrdv 4014 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 〈cop 4654 ↦ cmpt 5249 ◡ccnv 5699 Fun wfun 6569 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 Hom chom 17324 compcco 17325 Catccat 17724 Monocmon 17791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-mon 17793 |
This theorem is referenced by: setcmon 18156 |
Copyright terms: Public domain | W3C validator |