| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > monhom | Structured version Visualization version GIF version | ||
| Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| ismon.b | ⊢ 𝐵 = (Base‘𝐶) |
| ismon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| ismon.o | ⊢ · = (comp‘𝐶) |
| ismon.s | ⊢ 𝑀 = (Mono‘𝐶) |
| ismon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| ismon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ismon.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| monhom | ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismon.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | ismon.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | ismon.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 4 | ismon.s | . . . 4 ⊢ 𝑀 = (Mono‘𝐶) | |
| 5 | ismon.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 6 | ismon.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | ismon.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ismon 17701 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(〈𝑧, 𝑋〉 · 𝑌)𝑔))))) |
| 9 | simpl 482 | . . 3 ⊢ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(〈𝑧, 𝑋〉 · 𝑌)𝑔))) → 𝑓 ∈ (𝑋𝐻𝑌)) | |
| 10 | 8, 9 | biimtrdi 253 | . 2 ⊢ (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) → 𝑓 ∈ (𝑋𝐻𝑌))) |
| 11 | 10 | ssrdv 3954 | 1 ⊢ (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 〈cop 4597 ↦ cmpt 5190 ◡ccnv 5639 Fun wfun 6507 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Hom chom 17237 compcco 17238 Catccat 17631 Monocmon 17696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-mon 17698 |
| This theorem is referenced by: setcmon 18055 |
| Copyright terms: Public domain | W3C validator |