MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monhom Structured version   Visualization version   GIF version

Theorem monhom 17428
Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
Assertion
Ref Expression
monhom (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌))

Proof of Theorem monhom
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.b . . . 4 𝐵 = (Base‘𝐶)
2 ismon.h . . . 4 𝐻 = (Hom ‘𝐶)
3 ismon.o . . . 4 · = (comp‘𝐶)
4 ismon.s . . . 4 𝑀 = (Mono‘𝐶)
5 ismon.c . . . 4 (𝜑𝐶 ∈ Cat)
6 ismon.x . . . 4 (𝜑𝑋𝐵)
7 ismon.y . . . 4 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7ismon 17426 . . 3 (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) ↔ (𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)))))
9 simpl 482 . . 3 ((𝑓 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))) → 𝑓 ∈ (𝑋𝐻𝑌))
108, 9syl6bi 252 . 2 (𝜑 → (𝑓 ∈ (𝑋𝑀𝑌) → 𝑓 ∈ (𝑋𝐻𝑌)))
1110ssrdv 3931 1 (𝜑 → (𝑋𝑀𝑌) ⊆ (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065  wss 3891  cop 4572  cmpt 5161  ccnv 5587  Fun wfun 6424  cfv 6430  (class class class)co 7268  Basecbs 16893  Hom chom 16954  compcco 16955  Catccat 17354  Monocmon 17421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-mon 17423
This theorem is referenced by:  setcmon  17783
  Copyright terms: Public domain W3C validator