![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > monhom | Structured version Visualization version GIF version |
Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
ismon.b | β’ π΅ = (BaseβπΆ) |
ismon.h | β’ π» = (Hom βπΆ) |
ismon.o | β’ Β· = (compβπΆ) |
ismon.s | β’ π = (MonoβπΆ) |
ismon.c | β’ (π β πΆ β Cat) |
ismon.x | β’ (π β π β π΅) |
ismon.y | β’ (π β π β π΅) |
Ref | Expression |
---|---|
monhom | β’ (π β (πππ) β (ππ»π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismon.b | . . . 4 β’ π΅ = (BaseβπΆ) | |
2 | ismon.h | . . . 4 β’ π» = (Hom βπΆ) | |
3 | ismon.o | . . . 4 β’ Β· = (compβπΆ) | |
4 | ismon.s | . . . 4 β’ π = (MonoβπΆ) | |
5 | ismon.c | . . . 4 β’ (π β πΆ β Cat) | |
6 | ismon.x | . . . 4 β’ (π β π β π΅) | |
7 | ismon.y | . . . 4 β’ (π β π β π΅) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ismon 17687 | . . 3 β’ (π β (π β (πππ) β (π β (ππ»π) β§ βπ§ β π΅ Fun β‘(π β (π§π»π) β¦ (π(β¨π§, πβ© Β· π)π))))) |
9 | simpl 482 | . . 3 β’ ((π β (ππ»π) β§ βπ§ β π΅ Fun β‘(π β (π§π»π) β¦ (π(β¨π§, πβ© Β· π)π))) β π β (ππ»π)) | |
10 | 8, 9 | syl6bi 253 | . 2 β’ (π β (π β (πππ) β π β (ππ»π))) |
11 | 10 | ssrdv 3988 | 1 β’ (π β (πππ) β (ππ»π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 β wss 3948 β¨cop 4634 β¦ cmpt 5231 β‘ccnv 5675 Fun wfun 6537 βcfv 6543 (class class class)co 7412 Basecbs 17151 Hom chom 17215 compcco 17216 Catccat 17615 Monocmon 17682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-mon 17684 |
This theorem is referenced by: setcmon 18047 |
Copyright terms: Public domain | W3C validator |