Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon2 Structured version   Visualization version   GIF version

Theorem ismon2 16998
 Description: Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ismon2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
Distinct variable groups:   𝑔,,𝑧,𝐵   𝜑,𝑔,,𝑧   𝐶,𝑔,,𝑧   𝑔,𝐻,,𝑧   · ,𝑔,,𝑧   𝑔,𝐹,,𝑧   𝑔,𝑋,,𝑧   𝑔,𝑌,,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑔,)

Proof of Theorem ismon2
StepHypRef Expression
1 ismon.b . . 3 𝐵 = (Base‘𝐶)
2 ismon.h . . 3 𝐻 = (Hom ‘𝐶)
3 ismon.o . . 3 · = (comp‘𝐶)
4 ismon.s . . 3 𝑀 = (Mono‘𝐶)
5 ismon.c . . 3 (𝜑𝐶 ∈ Cat)
6 ismon.x . . 3 (𝜑𝑋𝐵)
7 ismon.y . . 3 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7ismon 16997 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
95ad2antrr 725 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
10 simprl 770 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
116ad2antrr 725 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
127ad2antrr 725 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑌𝐵)
13 simprr 772 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
14 simplr 768 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹 ∈ (𝑋𝐻𝑌))
151, 2, 3, 9, 10, 11, 12, 13, 14catcocl 16950 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
1615anassrs 471 . . . . . 6 ((((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) ∧ 𝑔 ∈ (𝑧𝐻𝑋)) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
1716ralrimiva 3149 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → ∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
18 eqid 2798 . . . . . . . 8 (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))
1918fmpt 6851 . . . . . . 7 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) ↔ (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌))
20 df-f1 6329 . . . . . . . 8 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌) ∧ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
2120baib 539 . . . . . . 7 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
2219, 21sylbi 220 . . . . . 6 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
23 oveq2 7143 . . . . . . . 8 (𝑔 = → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)))
2418, 23f1mpt 6997 . . . . . . 7 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) ∧ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2524baib 539 . . . . . 6 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2622, 25bitr3d 284 . . . . 5 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2717, 26syl 17 . . . 4 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2827ralbidva 3161 . . 3 ((𝜑𝐹 ∈ (𝑋𝐻𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2928pm5.32da 582 . 2 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
308, 29bitrd 282 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ⟨cop 4531   ↦ cmpt 5110  ◡ccnv 5518  Fun wfun 6318  ⟶wf 6320  –1-1→wf1 6321  ‘cfv 6324  (class class class)co 7135  Basecbs 16477  Hom chom 16570  compcco 16571  Catccat 16929  Monocmon 16992 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7673  df-2nd 7674  df-cat 16933  df-mon 16994 This theorem is referenced by:  moni  17000  sectmon  17046  fthmon  17191  setcmon  17341
 Copyright terms: Public domain W3C validator