MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon2 Structured version   Visualization version   GIF version

Theorem ismon2 17617
Description: Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ismon2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
Distinct variable groups:   𝑔,,𝑧,𝐵   𝜑,𝑔,,𝑧   𝐶,𝑔,,𝑧   𝑔,𝐻,,𝑧   · ,𝑔,,𝑧   𝑔,𝐹,,𝑧   𝑔,𝑋,,𝑧   𝑔,𝑌,,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑔,)

Proof of Theorem ismon2
StepHypRef Expression
1 ismon.b . . 3 𝐵 = (Base‘𝐶)
2 ismon.h . . 3 𝐻 = (Hom ‘𝐶)
3 ismon.o . . 3 · = (comp‘𝐶)
4 ismon.s . . 3 𝑀 = (Mono‘𝐶)
5 ismon.c . . 3 (𝜑𝐶 ∈ Cat)
6 ismon.x . . 3 (𝜑𝑋𝐵)
7 ismon.y . . 3 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7ismon 17616 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
95ad2antrr 724 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
10 simprl 769 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
116ad2antrr 724 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
127ad2antrr 724 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑌𝐵)
13 simprr 771 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
14 simplr 767 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹 ∈ (𝑋𝐻𝑌))
151, 2, 3, 9, 10, 11, 12, 13, 14catcocl 17565 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
1615anassrs 468 . . . . . 6 ((((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) ∧ 𝑔 ∈ (𝑧𝐻𝑋)) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
1716ralrimiva 3143 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → ∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
18 eqid 2736 . . . . . . . 8 (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))
1918fmpt 7058 . . . . . . 7 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) ↔ (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌))
20 df-f1 6501 . . . . . . . 8 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌) ∧ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
2120baib 536 . . . . . . 7 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
2219, 21sylbi 216 . . . . . 6 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
23 oveq2 7365 . . . . . . . 8 (𝑔 = → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)))
2418, 23f1mpt 7208 . . . . . . 7 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) ∧ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2524baib 536 . . . . . 6 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2622, 25bitr3d 280 . . . . 5 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2717, 26syl 17 . . . 4 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2827ralbidva 3172 . . 3 ((𝜑𝐹 ∈ (𝑋𝐻𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2928pm5.32da 579 . 2 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
308, 29bitrd 278 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  cop 4592  cmpt 5188  ccnv 5632  Fun wfun 6490  wf 6492  1-1wf1 6493  cfv 6496  (class class class)co 7357  Basecbs 17083  Hom chom 17144  compcco 17145  Catccat 17544  Monocmon 17611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-cat 17548  df-mon 17613
This theorem is referenced by:  moni  17619  sectmon  17665  fthmon  17814  setcmon  17973  idmon  47026  thincmon  47044  grptcmon  47106
  Copyright terms: Public domain W3C validator