MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon2 Structured version   Visualization version   GIF version

Theorem ismon2 17703
Description: Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ismon2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
Distinct variable groups:   𝑔,,𝑧,𝐵   𝜑,𝑔,,𝑧   𝐶,𝑔,,𝑧   𝑔,𝐻,,𝑧   · ,𝑔,,𝑧   𝑔,𝐹,,𝑧   𝑔,𝑋,,𝑧   𝑔,𝑌,,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑔,)

Proof of Theorem ismon2
StepHypRef Expression
1 ismon.b . . 3 𝐵 = (Base‘𝐶)
2 ismon.h . . 3 𝐻 = (Hom ‘𝐶)
3 ismon.o . . 3 · = (comp‘𝐶)
4 ismon.s . . 3 𝑀 = (Mono‘𝐶)
5 ismon.c . . 3 (𝜑𝐶 ∈ Cat)
6 ismon.x . . 3 (𝜑𝑋𝐵)
7 ismon.y . . 3 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7ismon 17702 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
95ad2antrr 726 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
10 simprl 770 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
116ad2antrr 726 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
127ad2antrr 726 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑌𝐵)
13 simprr 772 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
14 simplr 768 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹 ∈ (𝑋𝐻𝑌))
151, 2, 3, 9, 10, 11, 12, 13, 14catcocl 17653 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
1615anassrs 467 . . . . . 6 ((((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) ∧ 𝑔 ∈ (𝑧𝐻𝑋)) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
1716ralrimiva 3126 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → ∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
18 eqid 2730 . . . . . . . 8 (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))
1918fmpt 7085 . . . . . . 7 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) ↔ (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌))
20 df-f1 6519 . . . . . . . 8 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌) ∧ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
2120baib 535 . . . . . . 7 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
2219, 21sylbi 217 . . . . . 6 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
23 oveq2 7398 . . . . . . . 8 (𝑔 = → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)))
2418, 23f1mpt 7239 . . . . . . 7 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) ∧ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2524baib 535 . . . . . 6 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2622, 25bitr3d 281 . . . . 5 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2717, 26syl 17 . . . 4 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2827ralbidva 3155 . . 3 ((𝜑𝐹 ∈ (𝑋𝐻𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2928pm5.32da 579 . 2 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
308, 29bitrd 279 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cop 4598  cmpt 5191  ccnv 5640  Fun wfun 6508  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Monocmon 17697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-cat 17636  df-mon 17699
This theorem is referenced by:  moni  17705  sectmon  17751  fthmon  17898  setcmon  18056  idmon  49013  thincmon  49426  grptcmon  49586
  Copyright terms: Public domain W3C validator