MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon Structured version   Visualization version   GIF version

Theorem ismon 17648
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ismon (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
Distinct variable groups:   𝑧,𝑔,𝐵   𝜑,𝑔,𝑧   𝐶,𝑔,𝑧   𝑔,𝐻,𝑧   · ,𝑔,𝑧   𝑔,𝐹,𝑧   𝑔,𝑋,𝑧   𝑔,𝑌,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑔)

Proof of Theorem ismon
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.b . . . . 5 𝐵 = (Base‘𝐶)
2 ismon.h . . . . 5 𝐻 = (Hom ‘𝐶)
3 ismon.o . . . . 5 · = (comp‘𝐶)
4 ismon.s . . . . 5 𝑀 = (Mono‘𝐶)
5 ismon.c . . . . 5 (𝜑𝐶 ∈ Cat)
61, 2, 3, 4, 5monfval 17647 . . . 4 (𝜑𝑀 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
7 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
8 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
97, 8oveq12d 7373 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
107oveq2d 7371 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧𝐻𝑥) = (𝑧𝐻𝑋))
117opeq2d 4833 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ⟨𝑧, 𝑥⟩ = ⟨𝑧, 𝑋⟩)
1211, 8oveq12d 7373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (⟨𝑧, 𝑥· 𝑦) = (⟨𝑧, 𝑋· 𝑌))
1312oveqd 7372 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔) = (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))
1410, 13mpteq12dv 5182 . . . . . . . 8 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)))
1514cnveqd 5821 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)))
1615funeqd 6511 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))))
1716ralbidv 3156 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) ↔ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))))
189, 17rabeqbidv 3414 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))} = {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))})
19 ismon.x . . . 4 (𝜑𝑋𝐵)
20 ismon.y . . . 4 (𝜑𝑌𝐵)
21 ovex 7388 . . . . . 6 (𝑋𝐻𝑌) ∈ V
2221rabex 5281 . . . . 5 {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))} ∈ V
2322a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))} ∈ V)
246, 18, 19, 20, 23ovmpod 7507 . . 3 (𝜑 → (𝑋𝑀𝑌) = {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))})
2524eleq2d 2819 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹 ∈ {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))}))
26 oveq1 7362 . . . . . . 7 (𝑓 = 𝐹 → (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))
2726mpteq2dv 5189 . . . . . 6 (𝑓 = 𝐹 → (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))
2827cnveqd 5821 . . . . 5 (𝑓 = 𝐹(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))
2928funeqd 6511 . . . 4 (𝑓 = 𝐹 → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
3029ralbidv 3156 . . 3 (𝑓 = 𝐹 → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
3130elrab 3643 . 2 (𝐹 ∈ {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))} ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
3225, 31bitrdi 287 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437  cop 4583  cmpt 5176  ccnv 5620  Fun wfun 6483  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  compcco 17180  Catccat 17578  Monocmon 17643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-mon 17645
This theorem is referenced by:  ismon2  17649  monhom  17650  isepi  17655
  Copyright terms: Public domain W3C validator