MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon Structured version   Visualization version   GIF version

Theorem ismon 17658
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ismon (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
Distinct variable groups:   𝑧,𝑔,𝐵   𝜑,𝑔,𝑧   𝐶,𝑔,𝑧   𝑔,𝐻,𝑧   · ,𝑔,𝑧   𝑔,𝐹,𝑧   𝑔,𝑋,𝑧   𝑔,𝑌,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑔)

Proof of Theorem ismon
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.b . . . . 5 𝐵 = (Base‘𝐶)
2 ismon.h . . . . 5 𝐻 = (Hom ‘𝐶)
3 ismon.o . . . . 5 · = (comp‘𝐶)
4 ismon.s . . . . 5 𝑀 = (Mono‘𝐶)
5 ismon.c . . . . 5 (𝜑𝐶 ∈ Cat)
61, 2, 3, 4, 5monfval 17657 . . . 4 (𝜑𝑀 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
7 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
8 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
97, 8oveq12d 7371 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
107oveq2d 7369 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧𝐻𝑥) = (𝑧𝐻𝑋))
117opeq2d 4834 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ⟨𝑧, 𝑥⟩ = ⟨𝑧, 𝑋⟩)
1211, 8oveq12d 7371 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (⟨𝑧, 𝑥· 𝑦) = (⟨𝑧, 𝑋· 𝑌))
1312oveqd 7370 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔) = (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))
1410, 13mpteq12dv 5182 . . . . . . . 8 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)))
1514cnveqd 5822 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)))
1615funeqd 6508 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))))
1716ralbidv 3152 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)) ↔ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))))
189, 17rabeqbidv 3415 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))} = {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))})
19 ismon.x . . . 4 (𝜑𝑋𝐵)
20 ismon.y . . . 4 (𝜑𝑌𝐵)
21 ovex 7386 . . . . . 6 (𝑋𝐻𝑌) ∈ V
2221rabex 5281 . . . . 5 {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))} ∈ V
2322a1i 11 . . . 4 (𝜑 → {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))} ∈ V)
246, 18, 19, 20, 23ovmpod 7505 . . 3 (𝜑 → (𝑋𝑀𝑌) = {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))})
2524eleq2d 2814 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ 𝐹 ∈ {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))}))
26 oveq1 7360 . . . . . . 7 (𝑓 = 𝐹 → (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))
2726mpteq2dv 5189 . . . . . 6 (𝑓 = 𝐹 → (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))
2827cnveqd 5822 . . . . 5 (𝑓 = 𝐹(𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))
2928funeqd 6508 . . . 4 (𝑓 = 𝐹 → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
3029ralbidv 3152 . . 3 (𝑓 = 𝐹 → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
3130elrab 3650 . 2 (𝐹 ∈ {𝑓 ∈ (𝑋𝐻𝑌) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝑓(⟨𝑧, 𝑋· 𝑌)𝑔))} ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
3225, 31bitrdi 287 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cop 4585  cmpt 5176  ccnv 5622  Fun wfun 6480  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Monocmon 17653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-mon 17655
This theorem is referenced by:  ismon2  17659  monhom  17660  isepi  17665
  Copyright terms: Public domain W3C validator