MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvmot Structured version   Visualization version   GIF version

Theorem cnvmot 28444
Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motco.2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
cnvmot (𝜑𝐹 ∈ (𝐺Ismt𝐺))

Proof of Theorem cnvmot
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismot.p . . . 4 𝑃 = (Base‘𝐺)
2 ismot.m . . . 4 = (dist‘𝐺)
3 motgrp.1 . . . 4 (𝜑𝐺𝑉)
4 motco.2 . . . 4 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
51, 2, 3, 4motf1o 28441 . . 3 (𝜑𝐹:𝑃1-1-onto𝑃)
6 f1ocnv 6794 . . 3 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃1-1-onto𝑃)
75, 6syl 17 . 2 (𝜑𝐹:𝑃1-1-onto𝑃)
83adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐺𝑉)
9 f1of 6782 . . . . . . . 8 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃𝑃)
107, 9syl 17 . . . . . . 7 (𝜑𝐹:𝑃𝑃)
1110adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹:𝑃𝑃)
12 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑎𝑃)
1311, 12ffvelcdmd 7039 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹𝑎) ∈ 𝑃)
14 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑏𝑃)
1511, 14ffvelcdmd 7039 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹𝑏) ∈ 𝑃)
164adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺))
171, 2, 8, 13, 15, 16motcgr 28439 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = ((𝐹𝑎) (𝐹𝑏)))
18 f1ocnvfv2 7234 . . . . . 6 ((𝐹:𝑃1-1-onto𝑃𝑎𝑃) → (𝐹‘(𝐹𝑎)) = 𝑎)
195, 12, 18syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹‘(𝐹𝑎)) = 𝑎)
20 f1ocnvfv2 7234 . . . . . 6 ((𝐹:𝑃1-1-onto𝑃𝑏𝑃) → (𝐹‘(𝐹𝑏)) = 𝑏)
215, 14, 20syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹‘(𝐹𝑏)) = 𝑏)
2219, 21oveq12d 7387 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = (𝑎 𝑏))
2317, 22eqtr3d 2766 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))
2423ralrimivva 3178 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))
251, 2ismot 28438 . . 3 (𝐺𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
263, 25syl 17 . 2 (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
277, 24, 26mpbir2and 713 1 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ccnv 5630  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Basecbs 17155  distcds 17205  Ismtcismt 28435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-ismt 28436
This theorem is referenced by:  motgrp  28446
  Copyright terms: Public domain W3C validator