![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvmot | Structured version Visualization version GIF version |
Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
ismot.m | ⊢ − = (dist‘𝐺) |
motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
motco.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
Ref | Expression |
---|---|
cnvmot | ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismot.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismot.m | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | motgrp.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
4 | motco.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
5 | 1, 2, 3, 4 | motf1o 27769 | . . 3 ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
6 | f1ocnv 6842 | . . 3 ⊢ (𝐹:𝑃–1-1-onto→𝑃 → ◡𝐹:𝑃–1-1-onto→𝑃) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ◡𝐹:𝑃–1-1-onto→𝑃) |
8 | 3 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ 𝑉) |
9 | f1of 6830 | . . . . . . . 8 ⊢ (◡𝐹:𝑃–1-1-onto→𝑃 → ◡𝐹:𝑃⟶𝑃) | |
10 | 7, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ◡𝐹:𝑃⟶𝑃) |
11 | 10 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ◡𝐹:𝑃⟶𝑃) |
12 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) | |
13 | 11, 12 | ffvelcdmd 7083 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (◡𝐹‘𝑎) ∈ 𝑃) |
14 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) | |
15 | 11, 14 | ffvelcdmd 7083 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (◡𝐹‘𝑏) ∈ 𝑃) |
16 | 4 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺)) |
17 | 1, 2, 8, 13, 15, 16 | motcgr 27767 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(◡𝐹‘𝑎)) − (𝐹‘(◡𝐹‘𝑏))) = ((◡𝐹‘𝑎) − (◡𝐹‘𝑏))) |
18 | f1ocnvfv2 7270 | . . . . . 6 ⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝑎 ∈ 𝑃) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) | |
19 | 5, 12, 18 | syl2an2r 684 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) |
20 | f1ocnvfv2 7270 | . . . . . 6 ⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝑏 ∈ 𝑃) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) | |
21 | 5, 14, 20 | syl2an2r 684 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) |
22 | 19, 21 | oveq12d 7422 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(◡𝐹‘𝑎)) − (𝐹‘(◡𝐹‘𝑏))) = (𝑎 − 𝑏)) |
23 | 17, 22 | eqtr3d 2775 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)) |
24 | 23 | ralrimivva 3201 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)) |
25 | 1, 2 | ismot 27766 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (◡𝐹 ∈ (𝐺Ismt𝐺) ↔ (◡𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
26 | 3, 25 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 ∈ (𝐺Ismt𝐺) ↔ (◡𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
27 | 7, 24, 26 | mpbir2and 712 | 1 ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ◡ccnv 5674 ⟶wf 6536 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 distcds 17202 Ismtcismt 27763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-oprab 7408 df-mpo 7409 df-map 8818 df-ismt 27764 |
This theorem is referenced by: motgrp 27774 |
Copyright terms: Public domain | W3C validator |