| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvmot | Structured version Visualization version GIF version | ||
| Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismot.m | ⊢ − = (dist‘𝐺) |
| motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| motco.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
| Ref | Expression |
|---|---|
| cnvmot | ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismot.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | ismot.m | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | motgrp.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 4 | motco.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
| 5 | 1, 2, 3, 4 | motf1o 28536 | . . 3 ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
| 6 | f1ocnv 6783 | . . 3 ⊢ (𝐹:𝑃–1-1-onto→𝑃 → ◡𝐹:𝑃–1-1-onto→𝑃) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ◡𝐹:𝑃–1-1-onto→𝑃) |
| 8 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ 𝑉) |
| 9 | f1of 6771 | . . . . . . . 8 ⊢ (◡𝐹:𝑃–1-1-onto→𝑃 → ◡𝐹:𝑃⟶𝑃) | |
| 10 | 7, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ◡𝐹:𝑃⟶𝑃) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ◡𝐹:𝑃⟶𝑃) |
| 12 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) | |
| 13 | 11, 12 | ffvelcdmd 7027 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (◡𝐹‘𝑎) ∈ 𝑃) |
| 14 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) | |
| 15 | 11, 14 | ffvelcdmd 7027 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (◡𝐹‘𝑏) ∈ 𝑃) |
| 16 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺)) |
| 17 | 1, 2, 8, 13, 15, 16 | motcgr 28534 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(◡𝐹‘𝑎)) − (𝐹‘(◡𝐹‘𝑏))) = ((◡𝐹‘𝑎) − (◡𝐹‘𝑏))) |
| 18 | f1ocnvfv2 7220 | . . . . . 6 ⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝑎 ∈ 𝑃) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) | |
| 19 | 5, 12, 18 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) |
| 20 | f1ocnvfv2 7220 | . . . . . 6 ⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝑏 ∈ 𝑃) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) | |
| 21 | 5, 14, 20 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) |
| 22 | 19, 21 | oveq12d 7373 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(◡𝐹‘𝑎)) − (𝐹‘(◡𝐹‘𝑏))) = (𝑎 − 𝑏)) |
| 23 | 17, 22 | eqtr3d 2770 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)) |
| 24 | 23 | ralrimivva 3176 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)) |
| 25 | 1, 2 | ismot 28533 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (◡𝐹 ∈ (𝐺Ismt𝐺) ↔ (◡𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
| 26 | 3, 25 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 ∈ (𝐺Ismt𝐺) ↔ (◡𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
| 27 | 7, 24, 26 | mpbir2and 713 | 1 ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ◡ccnv 5620 ⟶wf 6485 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 distcds 17177 Ismtcismt 28530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-map 8761 df-ismt 28531 |
| This theorem is referenced by: motgrp 28541 |
| Copyright terms: Public domain | W3C validator |