Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvmot | Structured version Visualization version GIF version |
Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
ismot.m | ⊢ − = (dist‘𝐺) |
motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
motco.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
Ref | Expression |
---|---|
cnvmot | ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismot.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismot.m | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | motgrp.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
4 | motco.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
5 | 1, 2, 3, 4 | motf1o 26899 | . . 3 ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
6 | f1ocnv 6728 | . . 3 ⊢ (𝐹:𝑃–1-1-onto→𝑃 → ◡𝐹:𝑃–1-1-onto→𝑃) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ◡𝐹:𝑃–1-1-onto→𝑃) |
8 | 3 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ 𝑉) |
9 | f1of 6716 | . . . . . . . 8 ⊢ (◡𝐹:𝑃–1-1-onto→𝑃 → ◡𝐹:𝑃⟶𝑃) | |
10 | 7, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ◡𝐹:𝑃⟶𝑃) |
11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ◡𝐹:𝑃⟶𝑃) |
12 | simprl 768 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) | |
13 | 11, 12 | ffvelrnd 6962 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (◡𝐹‘𝑎) ∈ 𝑃) |
14 | simprr 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) | |
15 | 11, 14 | ffvelrnd 6962 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (◡𝐹‘𝑏) ∈ 𝑃) |
16 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺)) |
17 | 1, 2, 8, 13, 15, 16 | motcgr 26897 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(◡𝐹‘𝑎)) − (𝐹‘(◡𝐹‘𝑏))) = ((◡𝐹‘𝑎) − (◡𝐹‘𝑏))) |
18 | f1ocnvfv2 7149 | . . . . . 6 ⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝑎 ∈ 𝑃) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) | |
19 | 5, 12, 18 | syl2an2r 682 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) |
20 | f1ocnvfv2 7149 | . . . . . 6 ⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝑏 ∈ 𝑃) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) | |
21 | 5, 14, 20 | syl2an2r 682 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) |
22 | 19, 21 | oveq12d 7293 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(◡𝐹‘𝑎)) − (𝐹‘(◡𝐹‘𝑏))) = (𝑎 − 𝑏)) |
23 | 17, 22 | eqtr3d 2780 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)) |
24 | 23 | ralrimivva 3123 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)) |
25 | 1, 2 | ismot 26896 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (◡𝐹 ∈ (𝐺Ismt𝐺) ↔ (◡𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
26 | 3, 25 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 ∈ (𝐺Ismt𝐺) ↔ (◡𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
27 | 7, 24, 26 | mpbir2and 710 | 1 ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ◡ccnv 5588 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 distcds 16971 Ismtcismt 26893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-ismt 26894 |
This theorem is referenced by: motgrp 26904 |
Copyright terms: Public domain | W3C validator |