| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvmot | Structured version Visualization version GIF version | ||
| Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismot.m | ⊢ − = (dist‘𝐺) |
| motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| motco.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
| Ref | Expression |
|---|---|
| cnvmot | ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismot.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | ismot.m | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | motgrp.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 4 | motco.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
| 5 | 1, 2, 3, 4 | motf1o 28517 | . . 3 ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
| 6 | f1ocnv 6830 | . . 3 ⊢ (𝐹:𝑃–1-1-onto→𝑃 → ◡𝐹:𝑃–1-1-onto→𝑃) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ◡𝐹:𝑃–1-1-onto→𝑃) |
| 8 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ 𝑉) |
| 9 | f1of 6818 | . . . . . . . 8 ⊢ (◡𝐹:𝑃–1-1-onto→𝑃 → ◡𝐹:𝑃⟶𝑃) | |
| 10 | 7, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ◡𝐹:𝑃⟶𝑃) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ◡𝐹:𝑃⟶𝑃) |
| 12 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) | |
| 13 | 11, 12 | ffvelcdmd 7075 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (◡𝐹‘𝑎) ∈ 𝑃) |
| 14 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) | |
| 15 | 11, 14 | ffvelcdmd 7075 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (◡𝐹‘𝑏) ∈ 𝑃) |
| 16 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺)) |
| 17 | 1, 2, 8, 13, 15, 16 | motcgr 28515 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(◡𝐹‘𝑎)) − (𝐹‘(◡𝐹‘𝑏))) = ((◡𝐹‘𝑎) − (◡𝐹‘𝑏))) |
| 18 | f1ocnvfv2 7270 | . . . . . 6 ⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝑎 ∈ 𝑃) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) | |
| 19 | 5, 12, 18 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) |
| 20 | f1ocnvfv2 7270 | . . . . . 6 ⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝑏 ∈ 𝑃) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) | |
| 21 | 5, 14, 20 | syl2an2r 685 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) |
| 22 | 19, 21 | oveq12d 7423 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(◡𝐹‘𝑎)) − (𝐹‘(◡𝐹‘𝑏))) = (𝑎 − 𝑏)) |
| 23 | 17, 22 | eqtr3d 2772 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)) |
| 24 | 23 | ralrimivva 3187 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)) |
| 25 | 1, 2 | ismot 28514 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (◡𝐹 ∈ (𝐺Ismt𝐺) ↔ (◡𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
| 26 | 3, 25 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 ∈ (𝐺Ismt𝐺) ↔ (◡𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
| 27 | 7, 24, 26 | mpbir2and 713 | 1 ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ◡ccnv 5653 ⟶wf 6527 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 distcds 17280 Ismtcismt 28511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-ismt 28512 |
| This theorem is referenced by: motgrp 28522 |
| Copyright terms: Public domain | W3C validator |