Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvmot | Structured version Visualization version GIF version |
Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
ismot.m | ⊢ − = (dist‘𝐺) |
motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
motco.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
Ref | Expression |
---|---|
cnvmot | ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismot.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismot.m | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | motgrp.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
4 | motco.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
5 | 1, 2, 3, 4 | motf1o 26803 | . . 3 ⊢ (𝜑 → 𝐹:𝑃–1-1-onto→𝑃) |
6 | f1ocnv 6712 | . . 3 ⊢ (𝐹:𝑃–1-1-onto→𝑃 → ◡𝐹:𝑃–1-1-onto→𝑃) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ◡𝐹:𝑃–1-1-onto→𝑃) |
8 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐺 ∈ 𝑉) |
9 | f1of 6700 | . . . . . . . 8 ⊢ (◡𝐹:𝑃–1-1-onto→𝑃 → ◡𝐹:𝑃⟶𝑃) | |
10 | 7, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → ◡𝐹:𝑃⟶𝑃) |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ◡𝐹:𝑃⟶𝑃) |
12 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑎 ∈ 𝑃) | |
13 | 11, 12 | ffvelrnd 6944 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (◡𝐹‘𝑎) ∈ 𝑃) |
14 | simprr 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝑏 ∈ 𝑃) | |
15 | 11, 14 | ffvelrnd 6944 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (◡𝐹‘𝑏) ∈ 𝑃) |
16 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺)) |
17 | 1, 2, 8, 13, 15, 16 | motcgr 26801 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(◡𝐹‘𝑎)) − (𝐹‘(◡𝐹‘𝑏))) = ((◡𝐹‘𝑎) − (◡𝐹‘𝑏))) |
18 | f1ocnvfv2 7130 | . . . . . 6 ⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝑎 ∈ 𝑃) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) | |
19 | 5, 12, 18 | syl2an2r 681 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐹‘(◡𝐹‘𝑎)) = 𝑎) |
20 | f1ocnvfv2 7130 | . . . . . 6 ⊢ ((𝐹:𝑃–1-1-onto→𝑃 ∧ 𝑏 ∈ 𝑃) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) | |
21 | 5, 14, 20 | syl2an2r 681 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (𝐹‘(◡𝐹‘𝑏)) = 𝑏) |
22 | 19, 21 | oveq12d 7273 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝐹‘(◡𝐹‘𝑎)) − (𝐹‘(◡𝐹‘𝑏))) = (𝑎 − 𝑏)) |
23 | 17, 22 | eqtr3d 2780 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)) |
24 | 23 | ralrimivva 3114 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)) |
25 | 1, 2 | ismot 26800 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (◡𝐹 ∈ (𝐺Ismt𝐺) ↔ (◡𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
26 | 3, 25 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 ∈ (𝐺Ismt𝐺) ↔ (◡𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((◡𝐹‘𝑎) − (◡𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
27 | 7, 24, 26 | mpbir2and 709 | 1 ⊢ (𝜑 → ◡𝐹 ∈ (𝐺Ismt𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ◡ccnv 5579 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 Ismtcismt 26797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-ismt 26798 |
This theorem is referenced by: motgrp 26808 |
Copyright terms: Public domain | W3C validator |