MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvmot Structured version   Visualization version   GIF version

Theorem cnvmot 28520
Description: The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motco.2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
cnvmot (𝜑𝐹 ∈ (𝐺Ismt𝐺))

Proof of Theorem cnvmot
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismot.p . . . 4 𝑃 = (Base‘𝐺)
2 ismot.m . . . 4 = (dist‘𝐺)
3 motgrp.1 . . . 4 (𝜑𝐺𝑉)
4 motco.2 . . . 4 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
51, 2, 3, 4motf1o 28517 . . 3 (𝜑𝐹:𝑃1-1-onto𝑃)
6 f1ocnv 6830 . . 3 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃1-1-onto𝑃)
75, 6syl 17 . 2 (𝜑𝐹:𝑃1-1-onto𝑃)
83adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐺𝑉)
9 f1of 6818 . . . . . . . 8 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃𝑃)
107, 9syl 17 . . . . . . 7 (𝜑𝐹:𝑃𝑃)
1110adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹:𝑃𝑃)
12 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑎𝑃)
1311, 12ffvelcdmd 7075 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹𝑎) ∈ 𝑃)
14 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑏𝑃)
1511, 14ffvelcdmd 7075 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹𝑏) ∈ 𝑃)
164adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺))
171, 2, 8, 13, 15, 16motcgr 28515 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = ((𝐹𝑎) (𝐹𝑏)))
18 f1ocnvfv2 7270 . . . . . 6 ((𝐹:𝑃1-1-onto𝑃𝑎𝑃) → (𝐹‘(𝐹𝑎)) = 𝑎)
195, 12, 18syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹‘(𝐹𝑎)) = 𝑎)
20 f1ocnvfv2 7270 . . . . . 6 ((𝐹:𝑃1-1-onto𝑃𝑏𝑃) → (𝐹‘(𝐹𝑏)) = 𝑏)
215, 14, 20syl2an2r 685 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐹‘(𝐹𝑏)) = 𝑏)
2219, 21oveq12d 7423 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = (𝑎 𝑏))
2317, 22eqtr3d 2772 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))
2423ralrimivva 3187 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))
251, 2ismot 28514 . . 3 (𝐺𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
263, 25syl 17 . 2 (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
277, 24, 26mpbir2and 713 1 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  ccnv 5653  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Basecbs 17228  distcds 17280  Ismtcismt 28511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-ismt 28512
This theorem is referenced by:  motgrp  28522
  Copyright terms: Public domain W3C validator