MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsfval Structured version   Visualization version   GIF version

Theorem clsfval 22176
Description: The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1 𝑋 = 𝐽
Assertion
Ref Expression
clsfval (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem clsfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4 𝑋 = 𝐽
21topopn 22055 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 5301 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 mptexg 7097 . . 3 (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}) ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}) ∈ V)
6 unieq 4850 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1eqtr4di 2796 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4552 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
9 fveq2 6774 . . . . . 6 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
109rabeqdv 3419 . . . . 5 (𝑗 = 𝐽 → {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦} = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦})
1110inteqd 4884 . . . 4 (𝑗 = 𝐽 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦} = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦})
128, 11mpteq12dv 5165 . . 3 (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
13 df-cls 22172 . . 3 cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}))
1412, 13fvmptg 6873 . 2 ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}) ∈ V) → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
155, 14mpdan 684 1 (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  wss 3887  𝒫 cpw 4533   cuni 4839   cint 4879  cmpt 5157  cfv 6433  Topctop 22042  Clsdccld 22167  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cls 22172
This theorem is referenced by:  clsval  22188  clsf  22199  mrccls  22230
  Copyright terms: Public domain W3C validator