Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffun Structured version   Visualization version   GIF version

Theorem satffun 35396
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satffun ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))

Proof of Theorem satffun
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 35358 . . . 4 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
213adant3 1132 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘∅))
3 fveq2 6858 . . . 4 (𝑁 = ∅ → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘∅))
43funeqd 6538 . . 3 (𝑁 = ∅ → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘∅)))
52, 4imbitrrid 246 . 2 (𝑁 = ∅ → ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
6 df-ne 2926 . . . . . 6 (𝑁 ≠ ∅ ↔ ¬ 𝑁 = ∅)
7 nnsuc 7860 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑛 ∈ ω 𝑁 = suc 𝑛)
8 suceq 6400 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → suc 𝑥 = suc ∅)
98fveq2d 6862 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc ∅))
109funeqd 6538 . . . . . . . . . . . . 13 (𝑥 = ∅ → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc ∅)))
1110imbi2d 340 . . . . . . . . . . . 12 (𝑥 = ∅ → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))))
12 suceq 6400 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1312fveq2d 6862 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑦))
1413funeqd 6538 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))
1514imbi2d 340 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦))))
16 suceq 6400 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1716fveq2d 6862 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc suc 𝑦))
1817funeqd 6538 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))
1918imbi2d 340 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
20 suceq 6400 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → suc 𝑥 = suc 𝑛)
2120fveq2d 6862 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑛))
2221funeqd 6538 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
2322imbi2d 340 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
24 satffunlem1 35394 . . . . . . . . . . . 12 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))
25 pm2.27 42 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))
26 satffunlem2 35395 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))
2726expcom 413 . . . . . . . . . . . . . . 15 ((𝑀𝑉𝐸𝑊) → (𝑦 ∈ ω → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
2827com23 86 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
2925, 28syld 47 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
3029com13 88 . . . . . . . . . . . 12 (𝑦 ∈ ω → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
3111, 15, 19, 23, 24, 30finds 7872 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
3231adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
33 fveq2 6858 . . . . . . . . . . . . 13 (𝑁 = suc 𝑛 → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘suc 𝑛))
3433funeqd 6538 . . . . . . . . . . . 12 (𝑁 = suc 𝑛 → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
3534imbi2d 340 . . . . . . . . . . 11 (𝑁 = suc 𝑛 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
3635adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
3732, 36mpbird 257 . . . . . . . . 9 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
3837rexlimiva 3126 . . . . . . . 8 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
397, 38syl 17 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
4039expcom 413 . . . . . 6 (𝑁 ≠ ∅ → (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))))
416, 40sylbir 235 . . . . 5 𝑁 = ∅ → (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))))
4241com13 88 . . . 4 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁))))
43423impia 1117 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁)))
4443com12 32 . 2 𝑁 = ∅ → ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
455, 44pm2.61i 182 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  c0 4296  suc csuc 6334  Fun wfun 6505  cfv 6511  (class class class)co 7387  ωcom 7842   Sat csat 35323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-map 8801  df-goel 35327  df-gona 35328  df-goal 35329  df-sat 35330  df-fmla 35332
This theorem is referenced by:  satff  35397  satfv1fvfmla1  35410
  Copyright terms: Public domain W3C validator