Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffun Structured version   Visualization version   GIF version

Theorem satffun 35403
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satffun ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))

Proof of Theorem satffun
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 35365 . . . 4 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
213adant3 1132 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘∅))
3 fveq2 6861 . . . 4 (𝑁 = ∅ → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘∅))
43funeqd 6541 . . 3 (𝑁 = ∅ → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘∅)))
52, 4imbitrrid 246 . 2 (𝑁 = ∅ → ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
6 df-ne 2927 . . . . . 6 (𝑁 ≠ ∅ ↔ ¬ 𝑁 = ∅)
7 nnsuc 7863 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑛 ∈ ω 𝑁 = suc 𝑛)
8 suceq 6403 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → suc 𝑥 = suc ∅)
98fveq2d 6865 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc ∅))
109funeqd 6541 . . . . . . . . . . . . 13 (𝑥 = ∅ → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc ∅)))
1110imbi2d 340 . . . . . . . . . . . 12 (𝑥 = ∅ → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))))
12 suceq 6403 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1312fveq2d 6865 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑦))
1413funeqd 6541 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))
1514imbi2d 340 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦))))
16 suceq 6403 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1716fveq2d 6865 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc suc 𝑦))
1817funeqd 6541 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))
1918imbi2d 340 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
20 suceq 6403 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → suc 𝑥 = suc 𝑛)
2120fveq2d 6865 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑛))
2221funeqd 6541 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
2322imbi2d 340 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
24 satffunlem1 35401 . . . . . . . . . . . 12 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))
25 pm2.27 42 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))
26 satffunlem2 35402 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))
2726expcom 413 . . . . . . . . . . . . . . 15 ((𝑀𝑉𝐸𝑊) → (𝑦 ∈ ω → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
2827com23 86 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
2925, 28syld 47 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
3029com13 88 . . . . . . . . . . . 12 (𝑦 ∈ ω → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
3111, 15, 19, 23, 24, 30finds 7875 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
3231adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
33 fveq2 6861 . . . . . . . . . . . . 13 (𝑁 = suc 𝑛 → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘suc 𝑛))
3433funeqd 6541 . . . . . . . . . . . 12 (𝑁 = suc 𝑛 → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
3534imbi2d 340 . . . . . . . . . . 11 (𝑁 = suc 𝑛 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
3635adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
3732, 36mpbird 257 . . . . . . . . 9 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
3837rexlimiva 3127 . . . . . . . 8 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
397, 38syl 17 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
4039expcom 413 . . . . . 6 (𝑁 ≠ ∅ → (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))))
416, 40sylbir 235 . . . . 5 𝑁 = ∅ → (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))))
4241com13 88 . . . 4 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁))))
43423impia 1117 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁)))
4443com12 32 . 2 𝑁 = ∅ → ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
455, 44pm2.61i 182 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  c0 4299  suc csuc 6337  Fun wfun 6508  cfv 6514  (class class class)co 7390  ωcom 7845   Sat csat 35330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-map 8804  df-goel 35334  df-gona 35335  df-goal 35336  df-sat 35337  df-fmla 35339
This theorem is referenced by:  satff  35404  satfv1fvfmla1  35417
  Copyright terms: Public domain W3C validator