| Step | Hyp | Ref
| Expression |
| 1 | | satfv0fun 35377 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘∅)) |
| 2 | 1 | 3adant3 1132 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘∅)) |
| 3 | | fveq2 6905 |
. . . 4
⊢ (𝑁 = ∅ → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘∅)) |
| 4 | 3 | funeqd 6587 |
. . 3
⊢ (𝑁 = ∅ → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘∅))) |
| 5 | 2, 4 | imbitrrid 246 |
. 2
⊢ (𝑁 = ∅ → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))) |
| 6 | | df-ne 2940 |
. . . . . 6
⊢ (𝑁 ≠ ∅ ↔ ¬ 𝑁 = ∅) |
| 7 | | nnsuc 7906 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) →
∃𝑛 ∈ ω
𝑁 = suc 𝑛) |
| 8 | | suceq 6449 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ∅ → suc 𝑥 = suc ∅) |
| 9 | 8 | fveq2d 6909 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ∅ → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc ∅)) |
| 10 | 9 | funeqd 6587 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc ∅))) |
| 11 | 10 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅)))) |
| 12 | | suceq 6449 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) |
| 13 | 12 | fveq2d 6909 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑦)) |
| 14 | 13 | funeqd 6587 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑦))) |
| 15 | 14 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))) |
| 16 | | suceq 6449 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦) |
| 17 | 16 | fveq2d 6909 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = suc 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc suc 𝑦)) |
| 18 | 17 | funeqd 6587 |
. . . . . . . . . . . . 13
⊢ (𝑥 = suc 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))) |
| 19 | 18 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑥 = suc 𝑦 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))) |
| 20 | | suceq 6449 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑛 → suc 𝑥 = suc 𝑛) |
| 21 | 20 | fveq2d 6909 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑛)) |
| 22 | 21 | funeqd 6587 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛))) |
| 23 | 22 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑛 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))) |
| 24 | | satffunlem1 35413 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅)) |
| 25 | | pm2.27 42 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦))) |
| 26 | | satffunlem2 35414 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ω ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))) |
| 27 | 26 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑦 ∈ ω → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))) |
| 28 | 27 | com23 86 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))) |
| 29 | 25, 28 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))) |
| 30 | 29 | com13 88 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ω → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))) |
| 31 | 11, 15, 19, 23, 24, 30 | finds 7919 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))) |
| 32 | 31 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))) |
| 33 | | fveq2 6905 |
. . . . . . . . . . . . 13
⊢ (𝑁 = suc 𝑛 → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘suc 𝑛)) |
| 34 | 33 | funeqd 6587 |
. . . . . . . . . . . 12
⊢ (𝑁 = suc 𝑛 → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛))) |
| 35 | 34 | imbi2d 340 |
. . . . . . . . . . 11
⊢ (𝑁 = suc 𝑛 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))) |
| 36 | 35 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))) |
| 37 | 32, 36 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))) |
| 38 | 37 | rexlimiva 3146 |
. . . . . . . 8
⊢
(∃𝑛 ∈
ω 𝑁 = suc 𝑛 → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))) |
| 39 | 7, 38 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))) |
| 40 | 39 | expcom 413 |
. . . . . 6
⊢ (𝑁 ≠ ∅ → (𝑁 ∈ ω → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))) |
| 41 | 6, 40 | sylbir 235 |
. . . . 5
⊢ (¬
𝑁 = ∅ → (𝑁 ∈ ω → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))) |
| 42 | 41 | com13 88 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑁 ∈ ω → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁)))) |
| 43 | 42 | 3impia 1117 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁))) |
| 44 | 43 | com12 32 |
. 2
⊢ (¬
𝑁 = ∅ → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))) |
| 45 | 5, 44 | pm2.61i 182 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)) |