Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffun Structured version   Visualization version   GIF version

Theorem satffun 33359
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satffun ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))

Proof of Theorem satffun
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 33321 . . . 4 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
213adant3 1131 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘∅))
3 fveq2 6769 . . . 4 (𝑁 = ∅ → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘∅))
43funeqd 6453 . . 3 (𝑁 = ∅ → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘∅)))
52, 4syl5ibr 245 . 2 (𝑁 = ∅ → ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
6 df-ne 2946 . . . . . 6 (𝑁 ≠ ∅ ↔ ¬ 𝑁 = ∅)
7 nnsuc 7719 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑛 ∈ ω 𝑁 = suc 𝑛)
8 suceq 6329 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → suc 𝑥 = suc ∅)
98fveq2d 6773 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc ∅))
109funeqd 6453 . . . . . . . . . . . . 13 (𝑥 = ∅ → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc ∅)))
1110imbi2d 341 . . . . . . . . . . . 12 (𝑥 = ∅ → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))))
12 suceq 6329 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1312fveq2d 6773 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑦))
1413funeqd 6453 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))
1514imbi2d 341 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦))))
16 suceq 6329 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1716fveq2d 6773 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc suc 𝑦))
1817funeqd 6453 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))
1918imbi2d 341 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
20 suceq 6329 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → suc 𝑥 = suc 𝑛)
2120fveq2d 6773 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑛))
2221funeqd 6453 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
2322imbi2d 341 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
24 satffunlem1 33357 . . . . . . . . . . . 12 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))
25 pm2.27 42 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))
26 satffunlem2 33358 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))
2726expcom 414 . . . . . . . . . . . . . . 15 ((𝑀𝑉𝐸𝑊) → (𝑦 ∈ ω → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
2827com23 86 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
2925, 28syld 47 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
3029com13 88 . . . . . . . . . . . 12 (𝑦 ∈ ω → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
3111, 15, 19, 23, 24, 30finds 7733 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
3231adantr 481 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
33 fveq2 6769 . . . . . . . . . . . . 13 (𝑁 = suc 𝑛 → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘suc 𝑛))
3433funeqd 6453 . . . . . . . . . . . 12 (𝑁 = suc 𝑛 → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
3534imbi2d 341 . . . . . . . . . . 11 (𝑁 = suc 𝑛 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
3635adantl 482 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
3732, 36mpbird 256 . . . . . . . . 9 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
3837rexlimiva 3212 . . . . . . . 8 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
397, 38syl 17 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
4039expcom 414 . . . . . 6 (𝑁 ≠ ∅ → (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))))
416, 40sylbir 234 . . . . 5 𝑁 = ∅ → (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))))
4241com13 88 . . . 4 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁))))
43423impia 1116 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁)))
4443com12 32 . 2 𝑁 = ∅ → ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
455, 44pm2.61i 182 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wrex 3067  c0 4262  suc csuc 6266  Fun wfun 6425  cfv 6431  (class class class)co 7269  ωcom 7701   Sat csat 33286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-2o 8283  df-map 8592  df-goel 33290  df-gona 33291  df-goal 33292  df-sat 33293  df-fmla 33295
This theorem is referenced by:  satff  33360  satfv1fvfmla1  33373
  Copyright terms: Public domain W3C validator