Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffun Structured version   Visualization version   GIF version

Theorem satffun 35250
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satffun ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))

Proof of Theorem satffun
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 35212 . . . 4 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
213adant3 1129 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘∅))
3 fveq2 6893 . . . 4 (𝑁 = ∅ → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘∅))
43funeqd 6573 . . 3 (𝑁 = ∅ → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘∅)))
52, 4imbitrrid 245 . 2 (𝑁 = ∅ → ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
6 df-ne 2931 . . . . . 6 (𝑁 ≠ ∅ ↔ ¬ 𝑁 = ∅)
7 nnsuc 7886 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑛 ∈ ω 𝑁 = suc 𝑛)
8 suceq 6434 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → suc 𝑥 = suc ∅)
98fveq2d 6897 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc ∅))
109funeqd 6573 . . . . . . . . . . . . 13 (𝑥 = ∅ → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc ∅)))
1110imbi2d 339 . . . . . . . . . . . 12 (𝑥 = ∅ → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))))
12 suceq 6434 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1312fveq2d 6897 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑦))
1413funeqd 6573 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))
1514imbi2d 339 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦))))
16 suceq 6434 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1716fveq2d 6897 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc suc 𝑦))
1817funeqd 6573 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))
1918imbi2d 339 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
20 suceq 6434 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → suc 𝑥 = suc 𝑛)
2120fveq2d 6897 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑛))
2221funeqd 6573 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
2322imbi2d 339 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
24 satffunlem1 35248 . . . . . . . . . . . 12 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))
25 pm2.27 42 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))
26 satffunlem2 35249 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))
2726expcom 412 . . . . . . . . . . . . . . 15 ((𝑀𝑉𝐸𝑊) → (𝑦 ∈ ω → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
2827com23 86 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
2925, 28syld 47 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
3029com13 88 . . . . . . . . . . . 12 (𝑦 ∈ ω → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
3111, 15, 19, 23, 24, 30finds 7901 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
3231adantr 479 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
33 fveq2 6893 . . . . . . . . . . . . 13 (𝑁 = suc 𝑛 → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘suc 𝑛))
3433funeqd 6573 . . . . . . . . . . . 12 (𝑁 = suc 𝑛 → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
3534imbi2d 339 . . . . . . . . . . 11 (𝑁 = suc 𝑛 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
3635adantl 480 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
3732, 36mpbird 256 . . . . . . . . 9 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
3837rexlimiva 3137 . . . . . . . 8 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
397, 38syl 17 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
4039expcom 412 . . . . . 6 (𝑁 ≠ ∅ → (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))))
416, 40sylbir 234 . . . . 5 𝑁 = ∅ → (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))))
4241com13 88 . . . 4 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁))))
43423impia 1114 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁)))
4443com12 32 . 2 𝑁 = ∅ → ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
455, 44pm2.61i 182 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060  c0 4322  suc csuc 6370  Fun wfun 6540  cfv 6546  (class class class)co 7416  ωcom 7868   Sat csat 35177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-map 8849  df-goel 35181  df-gona 35182  df-goal 35183  df-sat 35184  df-fmla 35186
This theorem is referenced by:  satff  35251  satfv1fvfmla1  35264
  Copyright terms: Public domain W3C validator