Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffun Structured version   Visualization version   GIF version

Theorem satffun 32656
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satffun ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))

Proof of Theorem satffun
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 32618 . . . 4 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
213adant3 1128 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘∅))
3 fveq2 6670 . . . 4 (𝑁 = ∅ → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘∅))
43funeqd 6377 . . 3 (𝑁 = ∅ → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘∅)))
52, 4syl5ibr 248 . 2 (𝑁 = ∅ → ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
6 df-ne 3017 . . . . . 6 (𝑁 ≠ ∅ ↔ ¬ 𝑁 = ∅)
7 nnsuc 7597 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ∃𝑛 ∈ ω 𝑁 = suc 𝑛)
8 suceq 6256 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → suc 𝑥 = suc ∅)
98fveq2d 6674 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc ∅))
109funeqd 6377 . . . . . . . . . . . . 13 (𝑥 = ∅ → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc ∅)))
1110imbi2d 343 . . . . . . . . . . . 12 (𝑥 = ∅ → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))))
12 suceq 6256 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1312fveq2d 6674 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑦))
1413funeqd 6377 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))
1514imbi2d 343 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦))))
16 suceq 6256 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦)
1716fveq2d 6674 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc suc 𝑦))
1817funeqd 6377 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))
1918imbi2d 343 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
20 suceq 6256 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → suc 𝑥 = suc 𝑛)
2120fveq2d 6674 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((𝑀 Sat 𝐸)‘suc 𝑥) = ((𝑀 Sat 𝐸)‘suc 𝑛))
2221funeqd 6377 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (Fun ((𝑀 Sat 𝐸)‘suc 𝑥) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
2322imbi2d 343 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑥)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
24 satffunlem1 32654 . . . . . . . . . . . 12 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))
25 pm2.27 42 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)))
26 satffunlem2 32655 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ω ∧ (𝑀𝑉𝐸𝑊)) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦)))
2726expcom 416 . . . . . . . . . . . . . . 15 ((𝑀𝑉𝐸𝑊) → (𝑦 ∈ ω → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
2827com23 86 . . . . . . . . . . . . . 14 ((𝑀𝑉𝐸𝑊) → (Fun ((𝑀 Sat 𝐸)‘suc 𝑦) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
2925, 28syld 47 . . . . . . . . . . . . 13 ((𝑀𝑉𝐸𝑊) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → (𝑦 ∈ ω → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
3029com13 88 . . . . . . . . . . . 12 (𝑦 ∈ ω → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑦)) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc suc 𝑦))))
3111, 15, 19, 23, 24, 30finds 7608 . . . . . . . . . . 11 (𝑛 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
3231adantr 483 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
33 fveq2 6670 . . . . . . . . . . . . 13 (𝑁 = suc 𝑛 → ((𝑀 Sat 𝐸)‘𝑁) = ((𝑀 Sat 𝐸)‘suc 𝑛))
3433funeqd 6377 . . . . . . . . . . . 12 (𝑁 = suc 𝑛 → (Fun ((𝑀 Sat 𝐸)‘𝑁) ↔ Fun ((𝑀 Sat 𝐸)‘suc 𝑛)))
3534imbi2d 343 . . . . . . . . . . 11 (𝑁 = suc 𝑛 → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
3635adantl 484 . . . . . . . . . 10 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → (((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)) ↔ ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc 𝑛))))
3732, 36mpbird 259 . . . . . . . . 9 ((𝑛 ∈ ω ∧ 𝑁 = suc 𝑛) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
3837rexlimiva 3281 . . . . . . . 8 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
397, 38syl 17 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
4039expcom 416 . . . . . 6 (𝑁 ≠ ∅ → (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))))
416, 40sylbir 237 . . . . 5 𝑁 = ∅ → (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘𝑁))))
4241com13 88 . . . 4 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁))))
43423impia 1113 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (¬ 𝑁 = ∅ → Fun ((𝑀 Sat 𝐸)‘𝑁)))
4443com12 32 . 2 𝑁 = ∅ → ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁)))
455, 44pm2.61i 184 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  c0 4291  suc csuc 6193  Fun wfun 6349  cfv 6355  (class class class)co 7156  ωcom 7580   Sat csat 32583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-map 8408  df-goel 32587  df-gona 32588  df-goal 32589  df-sat 32590  df-fmla 32592
This theorem is referenced by:  satff  32657  satfv1fvfmla1  32670
  Copyright terms: Public domain W3C validator