![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntrtop | Structured version Visualization version GIF version |
Description: The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrtop | ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 21202 | . 2 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | ssid 3916 | . . 3 ⊢ 𝑋 ⊆ 𝑋 | |
4 | 1 | isopn3 21362 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋) → (𝑋 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑋) = 𝑋)) |
5 | 3, 4 | mpan2 687 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑋) = 𝑋)) |
6 | 2, 5 | mpbid 233 | 1 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1525 ∈ wcel 2083 ⊆ wss 3865 ∪ cuni 4751 ‘cfv 6232 Topctop 21189 intcnt 21313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-top 21190 df-ntr 21316 |
This theorem is referenced by: 0ntr 21367 dvidlem 24200 dveflem 24263 ioccncflimc 41731 icocncflimc 41735 |
Copyright terms: Public domain | W3C validator |