MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrtop Structured version   Visualization version   GIF version

Theorem ntrtop 21967
Description: The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrtop (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋)

Proof of Theorem ntrtop
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21topopn 21803 . 2 (𝐽 ∈ Top → 𝑋𝐽)
3 ssid 3923 . . 3 𝑋𝑋
41isopn3 21963 . . 3 ((𝐽 ∈ Top ∧ 𝑋𝑋) → (𝑋𝐽 ↔ ((int‘𝐽)‘𝑋) = 𝑋))
53, 4mpan2 691 . 2 (𝐽 ∈ Top → (𝑋𝐽 ↔ ((int‘𝐽)‘𝑋) = 𝑋))
62, 5mpbid 235 1 (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2110  wss 3866   cuni 4819  cfv 6380  Topctop 21790  intcnt 21914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-top 21791  df-ntr 21917
This theorem is referenced by:  0ntr  21968  dvidlem  24812  dveflem  24876  ioccncflimc  43101  icocncflimc  43105
  Copyright terms: Public domain W3C validator