| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ntrtop | Structured version Visualization version GIF version | ||
| Description: The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrtop | ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn 22831 | . 2 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 3 | ssid 3954 | . . 3 ⊢ 𝑋 ⊆ 𝑋 | |
| 4 | 1 | isopn3 22991 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋) → (𝑋 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑋) = 𝑋)) |
| 5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑋) = 𝑋)) |
| 6 | 2, 5 | mpbid 232 | 1 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 ∪ cuni 4860 ‘cfv 6489 Topctop 22818 intcnt 22942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-top 22819 df-ntr 22945 |
| This theorem is referenced by: 0ntr 22996 dvidlem 25853 dveflem 25920 ioccncflimc 45997 icocncflimc 46001 |
| Copyright terms: Public domain | W3C validator |