Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ntrtop | Structured version Visualization version GIF version |
Description: The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrtop | ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 22161 | . 2 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | ssid 3954 | . . 3 ⊢ 𝑋 ⊆ 𝑋 | |
4 | 1 | isopn3 22323 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋) → (𝑋 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑋) = 𝑋)) |
5 | 3, 4 | mpan2 688 | . 2 ⊢ (𝐽 ∈ Top → (𝑋 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑋) = 𝑋)) |
6 | 2, 5 | mpbid 231 | 1 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ∪ cuni 4852 ‘cfv 6479 Topctop 22148 intcnt 22274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-top 22149 df-ntr 22277 |
This theorem is referenced by: 0ntr 22328 dvidlem 25185 dveflem 25249 ioccncflimc 43762 icocncflimc 43766 |
Copyright terms: Public domain | W3C validator |