Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ntr | Structured version Visualization version GIF version |
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
0ntr | ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4294 | . . . . 5 ⊢ (𝑋 ⊆ 𝑆 ↔ (𝑋 ∖ 𝑆) = ∅) | |
2 | eqss 3932 | . . . . . . . . 9 ⊢ (𝑆 = 𝑋 ↔ (𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆)) | |
3 | fveq2 6756 | . . . . . . . . . . . . 13 ⊢ (𝑆 = 𝑋 → ((int‘𝐽)‘𝑆) = ((int‘𝐽)‘𝑋)) | |
4 | clscld.1 | . . . . . . . . . . . . . 14 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | ntrtop 22129 | . . . . . . . . . . . . 13 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
6 | 3, 5 | sylan9eqr 2801 | . . . . . . . . . . . 12 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → ((int‘𝐽)‘𝑆) = 𝑋) |
7 | 6 | eqeq1d 2740 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ 𝑋 = ∅)) |
8 | 7 | biimpd 228 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)) |
9 | 8 | ex 412 | . . . . . . . . 9 ⊢ (𝐽 ∈ Top → (𝑆 = 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))) |
10 | 2, 9 | syl5bir 242 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → ((𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))) |
11 | 10 | expd 415 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (𝑋 ⊆ 𝑆 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))) |
12 | 11 | com34 91 | . . . . . 6 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → (𝑋 ⊆ 𝑆 → 𝑋 = ∅)))) |
13 | 12 | imp32 418 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ⊆ 𝑆 → 𝑋 = ∅)) |
14 | 1, 13 | syl5bir 242 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → ((𝑋 ∖ 𝑆) = ∅ → 𝑋 = ∅)) |
15 | 14 | necon3d 2963 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ≠ ∅ → (𝑋 ∖ 𝑆) ≠ ∅)) |
16 | 15 | imp 406 | . 2 ⊢ (((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) ∧ 𝑋 ≠ ∅) → (𝑋 ∖ 𝑆) ≠ ∅) |
17 | 16 | an32s 648 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 intcnt 22076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-ntr 22079 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |