![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ntr | Structured version Visualization version GIF version |
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
0ntr | ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4371 | . . . . 5 ⊢ (𝑋 ⊆ 𝑆 ↔ (𝑋 ∖ 𝑆) = ∅) | |
2 | eqss 4010 | . . . . . . . . 9 ⊢ (𝑆 = 𝑋 ↔ (𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆)) | |
3 | fveq2 6906 | . . . . . . . . . . . . 13 ⊢ (𝑆 = 𝑋 → ((int‘𝐽)‘𝑆) = ((int‘𝐽)‘𝑋)) | |
4 | clscld.1 | . . . . . . . . . . . . . 14 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | ntrtop 23093 | . . . . . . . . . . . . 13 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
6 | 3, 5 | sylan9eqr 2796 | . . . . . . . . . . . 12 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → ((int‘𝐽)‘𝑆) = 𝑋) |
7 | 6 | eqeq1d 2736 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ 𝑋 = ∅)) |
8 | 7 | biimpd 229 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)) |
9 | 8 | ex 412 | . . . . . . . . 9 ⊢ (𝐽 ∈ Top → (𝑆 = 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))) |
10 | 2, 9 | biimtrrid 243 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → ((𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))) |
11 | 10 | expd 415 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (𝑋 ⊆ 𝑆 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))) |
12 | 11 | com34 91 | . . . . . 6 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → (𝑋 ⊆ 𝑆 → 𝑋 = ∅)))) |
13 | 12 | imp32 418 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ⊆ 𝑆 → 𝑋 = ∅)) |
14 | 1, 13 | biimtrrid 243 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → ((𝑋 ∖ 𝑆) = ∅ → 𝑋 = ∅)) |
15 | 14 | necon3d 2958 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ≠ ∅ → (𝑋 ∖ 𝑆) ≠ ∅)) |
16 | 15 | imp 406 | . 2 ⊢ (((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) ∧ 𝑋 ≠ ∅) → (𝑋 ∖ 𝑆) ≠ ∅) |
17 | 16 | an32s 652 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∖ cdif 3959 ⊆ wss 3962 ∅c0 4338 ∪ cuni 4911 ‘cfv 6562 Topctop 22914 intcnt 23040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-top 22915 df-ntr 23043 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |