![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ntr | Structured version Visualization version GIF version |
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
0ntr | ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4362 | . . . . 5 ⊢ (𝑋 ⊆ 𝑆 ↔ (𝑋 ∖ 𝑆) = ∅) | |
2 | eqss 3996 | . . . . . . . . 9 ⊢ (𝑆 = 𝑋 ↔ (𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆)) | |
3 | fveq2 6888 | . . . . . . . . . . . . 13 ⊢ (𝑆 = 𝑋 → ((int‘𝐽)‘𝑆) = ((int‘𝐽)‘𝑋)) | |
4 | clscld.1 | . . . . . . . . . . . . . 14 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | ntrtop 22556 | . . . . . . . . . . . . 13 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
6 | 3, 5 | sylan9eqr 2795 | . . . . . . . . . . . 12 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → ((int‘𝐽)‘𝑆) = 𝑋) |
7 | 6 | eqeq1d 2735 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ 𝑋 = ∅)) |
8 | 7 | biimpd 228 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)) |
9 | 8 | ex 414 | . . . . . . . . 9 ⊢ (𝐽 ∈ Top → (𝑆 = 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))) |
10 | 2, 9 | biimtrrid 242 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → ((𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))) |
11 | 10 | expd 417 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (𝑋 ⊆ 𝑆 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))) |
12 | 11 | com34 91 | . . . . . 6 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → (𝑋 ⊆ 𝑆 → 𝑋 = ∅)))) |
13 | 12 | imp32 420 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ⊆ 𝑆 → 𝑋 = ∅)) |
14 | 1, 13 | biimtrrid 242 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → ((𝑋 ∖ 𝑆) = ∅ → 𝑋 = ∅)) |
15 | 14 | necon3d 2962 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ≠ ∅ → (𝑋 ∖ 𝑆) ≠ ∅)) |
16 | 15 | imp 408 | . 2 ⊢ (((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) ∧ 𝑋 ≠ ∅) → (𝑋 ∖ 𝑆) ≠ ∅) |
17 | 16 | an32s 651 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4321 ∪ cuni 4907 ‘cfv 6540 Topctop 22377 intcnt 22503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-top 22378 df-ntr 22506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |