![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ntr | Structured version Visualization version GIF version |
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
0ntr | ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4389 | . . . . 5 ⊢ (𝑋 ⊆ 𝑆 ↔ (𝑋 ∖ 𝑆) = ∅) | |
2 | eqss 4024 | . . . . . . . . 9 ⊢ (𝑆 = 𝑋 ↔ (𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆)) | |
3 | fveq2 6920 | . . . . . . . . . . . . 13 ⊢ (𝑆 = 𝑋 → ((int‘𝐽)‘𝑆) = ((int‘𝐽)‘𝑋)) | |
4 | clscld.1 | . . . . . . . . . . . . . 14 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | ntrtop 23099 | . . . . . . . . . . . . 13 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) |
6 | 3, 5 | sylan9eqr 2802 | . . . . . . . . . . . 12 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → ((int‘𝐽)‘𝑆) = 𝑋) |
7 | 6 | eqeq1d 2742 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ 𝑋 = ∅)) |
8 | 7 | biimpd 229 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)) |
9 | 8 | ex 412 | . . . . . . . . 9 ⊢ (𝐽 ∈ Top → (𝑆 = 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))) |
10 | 2, 9 | biimtrrid 243 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → ((𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))) |
11 | 10 | expd 415 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (𝑋 ⊆ 𝑆 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))) |
12 | 11 | com34 91 | . . . . . 6 ⊢ (𝐽 ∈ Top → (𝑆 ⊆ 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → (𝑋 ⊆ 𝑆 → 𝑋 = ∅)))) |
13 | 12 | imp32 418 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ⊆ 𝑆 → 𝑋 = ∅)) |
14 | 1, 13 | biimtrrid 243 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → ((𝑋 ∖ 𝑆) = ∅ → 𝑋 = ∅)) |
15 | 14 | necon3d 2967 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ≠ ∅ → (𝑋 ∖ 𝑆) ≠ ∅)) |
16 | 15 | imp 406 | . 2 ⊢ (((𝐽 ∈ Top ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) ∧ 𝑋 ≠ ∅) → (𝑋 ∖ 𝑆) ≠ ∅) |
17 | 16 | an32s 651 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 intcnt 23046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-ntr 23049 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |