MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ntr Structured version   Visualization version   GIF version

Theorem 0ntr 21679
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
0ntr (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋𝑆) ≠ ∅)

Proof of Theorem 0ntr
StepHypRef Expression
1 ssdif0 4323 . . . . 5 (𝑋𝑆 ↔ (𝑋𝑆) = ∅)
2 eqss 3982 . . . . . . . . 9 (𝑆 = 𝑋 ↔ (𝑆𝑋𝑋𝑆))
3 fveq2 6670 . . . . . . . . . . . . 13 (𝑆 = 𝑋 → ((int‘𝐽)‘𝑆) = ((int‘𝐽)‘𝑋))
4 clscld.1 . . . . . . . . . . . . . 14 𝑋 = 𝐽
54ntrtop 21678 . . . . . . . . . . . . 13 (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋)
63, 5sylan9eqr 2878 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → ((int‘𝐽)‘𝑆) = 𝑋)
76eqeq1d 2823 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ 𝑋 = ∅))
87biimpd 231 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))
98ex 415 . . . . . . . . 9 (𝐽 ∈ Top → (𝑆 = 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))
102, 9syl5bir 245 . . . . . . . 8 (𝐽 ∈ Top → ((𝑆𝑋𝑋𝑆) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))
1110expd 418 . . . . . . 7 (𝐽 ∈ Top → (𝑆𝑋 → (𝑋𝑆 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))))
1211com34 91 . . . . . 6 (𝐽 ∈ Top → (𝑆𝑋 → (((int‘𝐽)‘𝑆) = ∅ → (𝑋𝑆𝑋 = ∅))))
1312imp32 421 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋𝑆𝑋 = ∅))
141, 13syl5bir 245 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → ((𝑋𝑆) = ∅ → 𝑋 = ∅))
1514necon3d 3037 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ≠ ∅ → (𝑋𝑆) ≠ ∅))
1615imp 409 . 2 (((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) ∧ 𝑋 ≠ ∅) → (𝑋𝑆) ≠ ∅)
1716an32s 650 1 (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  cdif 3933  wss 3936  c0 4291   cuni 4838  cfv 6355  Topctop 21501  intcnt 21625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-top 21502  df-ntr 21628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator