MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ntr Structured version   Visualization version   GIF version

Theorem 0ntr 21922
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
0ntr (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋𝑆) ≠ ∅)

Proof of Theorem 0ntr
StepHypRef Expression
1 ssdif0 4264 . . . . 5 (𝑋𝑆 ↔ (𝑋𝑆) = ∅)
2 eqss 3902 . . . . . . . . 9 (𝑆 = 𝑋 ↔ (𝑆𝑋𝑋𝑆))
3 fveq2 6695 . . . . . . . . . . . . 13 (𝑆 = 𝑋 → ((int‘𝐽)‘𝑆) = ((int‘𝐽)‘𝑋))
4 clscld.1 . . . . . . . . . . . . . 14 𝑋 = 𝐽
54ntrtop 21921 . . . . . . . . . . . . 13 (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋)
63, 5sylan9eqr 2793 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → ((int‘𝐽)‘𝑆) = 𝑋)
76eqeq1d 2738 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ ↔ 𝑋 = ∅))
87biimpd 232 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 = 𝑋) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))
98ex 416 . . . . . . . . 9 (𝐽 ∈ Top → (𝑆 = 𝑋 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))
102, 9syl5bir 246 . . . . . . . 8 (𝐽 ∈ Top → ((𝑆𝑋𝑋𝑆) → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅)))
1110expd 419 . . . . . . 7 (𝐽 ∈ Top → (𝑆𝑋 → (𝑋𝑆 → (((int‘𝐽)‘𝑆) = ∅ → 𝑋 = ∅))))
1211com34 91 . . . . . 6 (𝐽 ∈ Top → (𝑆𝑋 → (((int‘𝐽)‘𝑆) = ∅ → (𝑋𝑆𝑋 = ∅))))
1312imp32 422 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋𝑆𝑋 = ∅))
141, 13syl5bir 246 . . . 4 ((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → ((𝑋𝑆) = ∅ → 𝑋 = ∅))
1514necon3d 2953 . . 3 ((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ≠ ∅ → (𝑋𝑆) ≠ ∅))
1615imp 410 . 2 (((𝐽 ∈ Top ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) ∧ 𝑋 ≠ ∅) → (𝑋𝑆) ≠ ∅)
1716an32s 652 1 (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2932  cdif 3850  wss 3853  c0 4223   cuni 4805  cfv 6358  Topctop 21744  intcnt 21868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-top 21745  df-ntr 21871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator