![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilocv | Structured version Visualization version GIF version |
Description: The orthocomplement for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
hlhil0.h | β’ π» = (LHypβπΎ) |
hlhil0.l | β’ πΏ = ((DVecHβπΎ)βπ) |
hlhil0.u | β’ π = ((HLHilβπΎ)βπ) |
hlhil0.k | β’ (π β (πΎ β HL β§ π β π»)) |
hlhilocv.v | β’ π = (BaseβπΏ) |
hlhilocv.n | β’ π = ((ocHβπΎ)βπ) |
hlhilocv.o | β’ π = (ocvβπ) |
hlhilocv.x | β’ (π β π β π) |
Ref | Expression |
---|---|
hlhilocv | β’ (π β (πβπ) = (πβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhil0.h | . . . . 5 β’ π» = (LHypβπΎ) | |
2 | hlhil0.u | . . . . 5 β’ π = ((HLHilβπΎ)βπ) | |
3 | hlhil0.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
4 | hlhil0.l | . . . . 5 β’ πΏ = ((DVecHβπΎ)βπ) | |
5 | hlhilocv.v | . . . . 5 β’ π = (BaseβπΏ) | |
6 | 1, 2, 3, 4, 5 | hlhilbase 41437 | . . . 4 β’ (π β π = (Baseβπ)) |
7 | rabeq 3434 | . . . 4 β’ (π = (Baseβπ) β {π¦ β π β£ βπ§ β π (π¦(Β·πβπ)π§) = (0gβ(Scalarβπ))} = {π¦ β (Baseβπ) β£ βπ§ β π (π¦(Β·πβπ)π§) = (0gβ(Scalarβπ))}) | |
8 | 6, 7 | syl 17 | . . 3 β’ (π β {π¦ β π β£ βπ§ β π (π¦(Β·πβπ)π§) = (0gβ(Scalarβπ))} = {π¦ β (Baseβπ) β£ βπ§ β π (π¦(Β·πβπ)π§) = (0gβ(Scalarβπ))}) |
9 | eqid 2725 | . . . . . . 7 β’ ((HDMapβπΎ)βπ) = ((HDMapβπΎ)βπ) | |
10 | 3 | ad2antrr 724 | . . . . . . 7 β’ (((π β§ π¦ β π) β§ π§ β π) β (πΎ β HL β§ π β π»)) |
11 | eqid 2725 | . . . . . . 7 β’ (Β·πβπ) = (Β·πβπ) | |
12 | simplr 767 | . . . . . . 7 β’ (((π β§ π¦ β π) β§ π§ β π) β π¦ β π) | |
13 | hlhilocv.x | . . . . . . . . 9 β’ (π β π β π) | |
14 | 13 | adantr 479 | . . . . . . . 8 β’ ((π β§ π¦ β π) β π β π) |
15 | 14 | sselda 3972 | . . . . . . 7 β’ (((π β§ π¦ β π) β§ π§ β π) β π§ β π) |
16 | 1, 4, 5, 9, 2, 10, 11, 12, 15 | hlhilipval 41454 | . . . . . 6 β’ (((π β§ π¦ β π) β§ π§ β π) β (π¦(Β·πβπ)π§) = ((((HDMapβπΎ)βπ)βπ§)βπ¦)) |
17 | eqid 2725 | . . . . . . . . 9 β’ (ScalarβπΏ) = (ScalarβπΏ) | |
18 | eqid 2725 | . . . . . . . . 9 β’ (Scalarβπ) = (Scalarβπ) | |
19 | eqid 2725 | . . . . . . . . 9 β’ (0gβ(ScalarβπΏ)) = (0gβ(ScalarβπΏ)) | |
20 | 1, 4, 17, 2, 18, 3, 19 | hlhils0 41450 | . . . . . . . 8 β’ (π β (0gβ(ScalarβπΏ)) = (0gβ(Scalarβπ))) |
21 | 20 | eqcomd 2731 | . . . . . . 7 β’ (π β (0gβ(Scalarβπ)) = (0gβ(ScalarβπΏ))) |
22 | 21 | ad2antrr 724 | . . . . . 6 β’ (((π β§ π¦ β π) β§ π§ β π) β (0gβ(Scalarβπ)) = (0gβ(ScalarβπΏ))) |
23 | 16, 22 | eqeq12d 2741 | . . . . 5 β’ (((π β§ π¦ β π) β§ π§ β π) β ((π¦(Β·πβπ)π§) = (0gβ(Scalarβπ)) β ((((HDMapβπΎ)βπ)βπ§)βπ¦) = (0gβ(ScalarβπΏ)))) |
24 | 23 | ralbidva 3166 | . . . 4 β’ ((π β§ π¦ β π) β (βπ§ β π (π¦(Β·πβπ)π§) = (0gβ(Scalarβπ)) β βπ§ β π ((((HDMapβπΎ)βπ)βπ§)βπ¦) = (0gβ(ScalarβπΏ)))) |
25 | 24 | rabbidva 3426 | . . 3 β’ (π β {π¦ β π β£ βπ§ β π (π¦(Β·πβπ)π§) = (0gβ(Scalarβπ))} = {π¦ β π β£ βπ§ β π ((((HDMapβπΎ)βπ)βπ§)βπ¦) = (0gβ(ScalarβπΏ))}) |
26 | 8, 25 | eqtr3d 2767 | . 2 β’ (π β {π¦ β (Baseβπ) β£ βπ§ β π (π¦(Β·πβπ)π§) = (0gβ(Scalarβπ))} = {π¦ β π β£ βπ§ β π ((((HDMapβπΎ)βπ)βπ§)βπ¦) = (0gβ(ScalarβπΏ))}) |
27 | 13, 6 | sseqtrd 4012 | . . 3 β’ (π β π β (Baseβπ)) |
28 | eqid 2725 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
29 | eqid 2725 | . . . 4 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
30 | hlhilocv.o | . . . 4 β’ π = (ocvβπ) | |
31 | 28, 11, 18, 29, 30 | ocvval 21601 | . . 3 β’ (π β (Baseβπ) β (πβπ) = {π¦ β (Baseβπ) β£ βπ§ β π (π¦(Β·πβπ)π§) = (0gβ(Scalarβπ))}) |
32 | 27, 31 | syl 17 | . 2 β’ (π β (πβπ) = {π¦ β (Baseβπ) β£ βπ§ β π (π¦(Β·πβπ)π§) = (0gβ(Scalarβπ))}) |
33 | hlhilocv.n | . . 3 β’ π = ((ocHβπΎ)βπ) | |
34 | 1, 4, 5, 17, 19, 33, 9, 3, 13 | hdmapoc 41432 | . 2 β’ (π β (πβπ) = {π¦ β π β£ βπ§ β π ((((HDMapβπΎ)βπ)βπ§)βπ¦) = (0gβ(ScalarβπΏ))}) |
35 | 26, 32, 34 | 3eqtr4d 2775 | 1 β’ (π β (πβπ) = (πβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 {crab 3419 β wss 3939 βcfv 6541 (class class class)co 7414 Basecbs 17177 Scalarcsca 17233 Β·πcip 17235 0gc0g 17418 ocvcocv 21594 HLchlt 38850 LHypclh 39485 DVecHcdvh 40579 ocHcoch 40848 HDMapchdma 41293 HLHilchlh 41433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-riotaBAD 38453 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-ot 4631 df-uni 4902 df-int 4943 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7989 df-2nd 7990 df-tpos 8228 df-undef 8275 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-starv 17245 df-sca 17246 df-vsca 17247 df-ip 17248 df-0g 17420 df-mre 17563 df-mrc 17564 df-acs 17566 df-proset 18284 df-poset 18302 df-plt 18319 df-lub 18335 df-glb 18336 df-join 18337 df-meet 18338 df-p0 18414 df-p1 18415 df-lat 18421 df-clat 18488 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-cntz 19270 df-oppg 19299 df-lsm 19593 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-dvr 20342 df-drng 20628 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lvec 20990 df-ocv 21597 df-lsatoms 38476 df-lshyp 38477 df-lcv 38519 df-lfl 38558 df-lkr 38586 df-ldual 38624 df-oposet 38676 df-ol 38678 df-oml 38679 df-covers 38766 df-ats 38767 df-atl 38798 df-cvlat 38822 df-hlat 38851 df-llines 38999 df-lplanes 39000 df-lvols 39001 df-lines 39002 df-psubsp 39004 df-pmap 39005 df-padd 39297 df-lhyp 39489 df-laut 39490 df-ldil 39605 df-ltrn 39606 df-trl 39660 df-tgrp 40244 df-tendo 40256 df-edring 40258 df-dveca 40504 df-disoa 40530 df-dvech 40580 df-dib 40640 df-dic 40674 df-dih 40730 df-doch 40849 df-djh 40896 df-lcdual 41088 df-mapd 41126 df-hvmap 41258 df-hdmap1 41294 df-hdmap 41295 df-hlhil 41434 |
This theorem is referenced by: hlhillcs 41463 hlhilhillem 41465 |
Copyright terms: Public domain | W3C validator |