Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilocv | Structured version Visualization version GIF version |
Description: The orthocomplement for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
hlhil0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhil0.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
hlhil0.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhil0.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilocv.v | ⊢ 𝑉 = (Base‘𝐿) |
hlhilocv.n | ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) |
hlhilocv.o | ⊢ 𝑂 = (ocv‘𝑈) |
hlhilocv.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
Ref | Expression |
---|---|
hlhilocv | ⊢ (𝜑 → (𝑂‘𝑋) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhil0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hlhil0.u | . . . . 5 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
3 | hlhil0.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | hlhil0.l | . . . . 5 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
5 | hlhilocv.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐿) | |
6 | 1, 2, 3, 4, 5 | hlhilbase 39950 | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑈)) |
7 | rabeq 3418 | . . . 4 ⊢ (𝑉 = (Base‘𝑈) → {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 (𝑦(·𝑖‘𝑈)𝑧) = (0g‘(Scalar‘𝑈))} = {𝑦 ∈ (Base‘𝑈) ∣ ∀𝑧 ∈ 𝑋 (𝑦(·𝑖‘𝑈)𝑧) = (0g‘(Scalar‘𝑈))}) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 (𝑦(·𝑖‘𝑈)𝑧) = (0g‘(Scalar‘𝑈))} = {𝑦 ∈ (Base‘𝑈) ∣ ∀𝑧 ∈ 𝑋 (𝑦(·𝑖‘𝑈)𝑧) = (0g‘(Scalar‘𝑈))}) |
9 | eqid 2738 | . . . . . . 7 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
10 | 3 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | eqid 2738 | . . . . . . 7 ⊢ (·𝑖‘𝑈) = (·𝑖‘𝑈) | |
12 | simplr 766 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → 𝑦 ∈ 𝑉) | |
13 | hlhilocv.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
14 | 13 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → 𝑋 ⊆ 𝑉) |
15 | 14 | sselda 3921 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑉) |
16 | 1, 4, 5, 9, 2, 10, 11, 12, 15 | hlhilipval 39967 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (𝑦(·𝑖‘𝑈)𝑧) = ((((HDMap‘𝐾)‘𝑊)‘𝑧)‘𝑦)) |
17 | eqid 2738 | . . . . . . . . 9 ⊢ (Scalar‘𝐿) = (Scalar‘𝐿) | |
18 | eqid 2738 | . . . . . . . . 9 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
19 | eqid 2738 | . . . . . . . . 9 ⊢ (0g‘(Scalar‘𝐿)) = (0g‘(Scalar‘𝐿)) | |
20 | 1, 4, 17, 2, 18, 3, 19 | hlhils0 39963 | . . . . . . . 8 ⊢ (𝜑 → (0g‘(Scalar‘𝐿)) = (0g‘(Scalar‘𝑈))) |
21 | 20 | eqcomd 2744 | . . . . . . 7 ⊢ (𝜑 → (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝐿))) |
22 | 21 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝐿))) |
23 | 16, 22 | eqeq12d 2754 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑉) ∧ 𝑧 ∈ 𝑋) → ((𝑦(·𝑖‘𝑈)𝑧) = (0g‘(Scalar‘𝑈)) ↔ ((((HDMap‘𝐾)‘𝑊)‘𝑧)‘𝑦) = (0g‘(Scalar‘𝐿)))) |
24 | 23 | ralbidva 3111 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (∀𝑧 ∈ 𝑋 (𝑦(·𝑖‘𝑈)𝑧) = (0g‘(Scalar‘𝑈)) ↔ ∀𝑧 ∈ 𝑋 ((((HDMap‘𝐾)‘𝑊)‘𝑧)‘𝑦) = (0g‘(Scalar‘𝐿)))) |
25 | 24 | rabbidva 3413 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 (𝑦(·𝑖‘𝑈)𝑧) = (0g‘(Scalar‘𝑈))} = {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((((HDMap‘𝐾)‘𝑊)‘𝑧)‘𝑦) = (0g‘(Scalar‘𝐿))}) |
26 | 8, 25 | eqtr3d 2780 | . 2 ⊢ (𝜑 → {𝑦 ∈ (Base‘𝑈) ∣ ∀𝑧 ∈ 𝑋 (𝑦(·𝑖‘𝑈)𝑧) = (0g‘(Scalar‘𝑈))} = {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((((HDMap‘𝐾)‘𝑊)‘𝑧)‘𝑦) = (0g‘(Scalar‘𝐿))}) |
27 | 13, 6 | sseqtrd 3961 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ (Base‘𝑈)) |
28 | eqid 2738 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
29 | eqid 2738 | . . . 4 ⊢ (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈)) | |
30 | hlhilocv.o | . . . 4 ⊢ 𝑂 = (ocv‘𝑈) | |
31 | 28, 11, 18, 29, 30 | ocvval 20872 | . . 3 ⊢ (𝑋 ⊆ (Base‘𝑈) → (𝑂‘𝑋) = {𝑦 ∈ (Base‘𝑈) ∣ ∀𝑧 ∈ 𝑋 (𝑦(·𝑖‘𝑈)𝑧) = (0g‘(Scalar‘𝑈))}) |
32 | 27, 31 | syl 17 | . 2 ⊢ (𝜑 → (𝑂‘𝑋) = {𝑦 ∈ (Base‘𝑈) ∣ ∀𝑧 ∈ 𝑋 (𝑦(·𝑖‘𝑈)𝑧) = (0g‘(Scalar‘𝑈))}) |
33 | hlhilocv.n | . . 3 ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) | |
34 | 1, 4, 5, 17, 19, 33, 9, 3, 13 | hdmapoc 39945 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((((HDMap‘𝐾)‘𝑊)‘𝑧)‘𝑦) = (0g‘(Scalar‘𝐿))}) |
35 | 26, 32, 34 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝑂‘𝑋) = (𝑁‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑖cip 16967 0gc0g 17150 ocvcocv 20865 HLchlt 37364 LHypclh 37998 DVecHcdvh 39092 ocHcoch 39361 HDMapchdma 39806 HLHilchlh 39946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-0g 17152 df-mre 17295 df-mrc 17296 df-acs 17298 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-oppg 18950 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-ocv 20868 df-lsatoms 36990 df-lshyp 36991 df-lcv 37033 df-lfl 37072 df-lkr 37100 df-ldual 37138 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tgrp 38757 df-tendo 38769 df-edring 38771 df-dveca 39017 df-disoa 39043 df-dvech 39093 df-dib 39153 df-dic 39187 df-dih 39243 df-doch 39362 df-djh 39409 df-lcdual 39601 df-mapd 39639 df-hvmap 39771 df-hdmap1 39807 df-hdmap 39808 df-hlhil 39947 |
This theorem is referenced by: hlhillcs 39976 hlhilhillem 39978 |
Copyright terms: Public domain | W3C validator |