MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offveqb Structured version   Visualization version   GIF version

Theorem offveqb 7691
Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
offveq.1 (𝜑𝐴𝑉)
offveq.2 (𝜑𝐹 Fn 𝐴)
offveq.3 (𝜑𝐺 Fn 𝐴)
offveq.4 (𝜑𝐻 Fn 𝐴)
offveq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
offveq.6 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
Assertion
Ref Expression
offveqb (𝜑 → (𝐻 = (𝐹f 𝑅𝐺) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem offveqb
StepHypRef Expression
1 offveq.4 . . . 4 (𝜑𝐻 Fn 𝐴)
2 dffn5 6947 . . . 4 (𝐻 Fn 𝐴𝐻 = (𝑥𝐴 ↦ (𝐻𝑥)))
31, 2sylib 217 . . 3 (𝜑𝐻 = (𝑥𝐴 ↦ (𝐻𝑥)))
4 offveq.2 . . . 4 (𝜑𝐹 Fn 𝐴)
5 offveq.3 . . . 4 (𝜑𝐺 Fn 𝐴)
6 offveq.1 . . . 4 (𝜑𝐴𝑉)
7 inidm 4217 . . . 4 (𝐴𝐴) = 𝐴
8 offveq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
9 offveq.6 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
104, 5, 6, 6, 7, 8, 9offval 7675 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
113, 10eqeq12d 2748 . 2 (𝜑 → (𝐻 = (𝐹f 𝑅𝐺) ↔ (𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))))
12 fvexd 6903 . . . 4 (𝜑 → (𝐻𝑥) ∈ V)
1312ralrimivw 3150 . . 3 (𝜑 → ∀𝑥𝐴 (𝐻𝑥) ∈ V)
14 mpteqb 7014 . . 3 (∀𝑥𝐴 (𝐻𝑥) ∈ V → ((𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
1513, 14syl 17 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
1611, 15bitrd 278 1 (𝜑 → (𝐻 = (𝐹f 𝑅𝐺) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  cmpt 5230   Fn wfn 6535  cfv 6540  (class class class)co 7405  f cof 7664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666
This theorem is referenced by:  eqlkr2  37958
  Copyright terms: Public domain W3C validator