| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offveqb | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| Ref | Expression |
|---|---|
| offveq.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offveq.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offveq.3 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| offveq.4 | ⊢ (𝜑 → 𝐻 Fn 𝐴) |
| offveq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| offveq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) |
| Ref | Expression |
|---|---|
| offveqb | ⊢ (𝜑 → (𝐻 = (𝐹 ∘f 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offveq.4 | . . . 4 ⊢ (𝜑 → 𝐻 Fn 𝐴) | |
| 2 | dffn5 6901 | . . . 4 ⊢ (𝐻 Fn 𝐴 ↔ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥))) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥))) |
| 4 | offveq.2 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | offveq.3 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 6 | offveq.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | inidm 4186 | . . . 4 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 8 | offveq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
| 9 | offveq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) | |
| 10 | 4, 5, 6, 6, 7, 8, 9 | offval 7642 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
| 11 | 3, 10 | eqeq12d 2745 | . 2 ⊢ (𝜑 → (𝐻 = (𝐹 ∘f 𝑅𝐺) ↔ (𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)))) |
| 12 | fvexd 6855 | . . . 4 ⊢ (𝜑 → (𝐻‘𝑥) ∈ V) | |
| 13 | 12 | ralrimivw 3129 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) ∈ V) |
| 14 | mpteqb 6969 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐻‘𝑥) ∈ V → ((𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐻‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
| 16 | 11, 15 | bitrd 279 | 1 ⊢ (𝜑 → (𝐻 = (𝐹 ∘f 𝑅𝐺) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐵𝑅𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ↦ cmpt 5183 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 |
| This theorem is referenced by: eqlkr2 39066 |
| Copyright terms: Public domain | W3C validator |