MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offveqb Structured version   Visualization version   GIF version

Theorem offveqb 7637
Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
offveq.1 (𝜑𝐴𝑉)
offveq.2 (𝜑𝐹 Fn 𝐴)
offveq.3 (𝜑𝐺 Fn 𝐴)
offveq.4 (𝜑𝐻 Fn 𝐴)
offveq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
offveq.6 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
Assertion
Ref Expression
offveqb (𝜑 → (𝐻 = (𝐹f 𝑅𝐺) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem offveqb
StepHypRef Expression
1 offveq.4 . . . 4 (𝜑𝐻 Fn 𝐴)
2 dffn5 6880 . . . 4 (𝐻 Fn 𝐴𝐻 = (𝑥𝐴 ↦ (𝐻𝑥)))
31, 2sylib 218 . . 3 (𝜑𝐻 = (𝑥𝐴 ↦ (𝐻𝑥)))
4 offveq.2 . . . 4 (𝜑𝐹 Fn 𝐴)
5 offveq.3 . . . 4 (𝜑𝐺 Fn 𝐴)
6 offveq.1 . . . 4 (𝜑𝐴𝑉)
7 inidm 4174 . . . 4 (𝐴𝐴) = 𝐴
8 offveq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
9 offveq.6 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
104, 5, 6, 6, 7, 8, 9offval 7619 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
113, 10eqeq12d 2747 . 2 (𝜑 → (𝐻 = (𝐹f 𝑅𝐺) ↔ (𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))))
12 fvexd 6837 . . . 4 (𝜑 → (𝐻𝑥) ∈ V)
1312ralrimivw 3128 . . 3 (𝜑 → ∀𝑥𝐴 (𝐻𝑥) ∈ V)
14 mpteqb 6948 . . 3 (∀𝑥𝐴 (𝐻𝑥) ∈ V → ((𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
1513, 14syl 17 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
1611, 15bitrd 279 1 (𝜑 → (𝐻 = (𝐹f 𝑅𝐺) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cmpt 5170   Fn wfn 6476  cfv 6481  (class class class)co 7346  f cof 7608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610
This theorem is referenced by:  eqlkr2  39147
  Copyright terms: Public domain W3C validator