MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offveqb Structured version   Visualization version   GIF version

Theorem offveqb 7725
Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
offveq.1 (𝜑𝐴𝑉)
offveq.2 (𝜑𝐹 Fn 𝐴)
offveq.3 (𝜑𝐺 Fn 𝐴)
offveq.4 (𝜑𝐻 Fn 𝐴)
offveq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
offveq.6 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
Assertion
Ref Expression
offveqb (𝜑 → (𝐻 = (𝐹f 𝑅𝐺) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem offveqb
StepHypRef Expression
1 offveq.4 . . . 4 (𝜑𝐻 Fn 𝐴)
2 dffn5 6966 . . . 4 (𝐻 Fn 𝐴𝐻 = (𝑥𝐴 ↦ (𝐻𝑥)))
31, 2sylib 218 . . 3 (𝜑𝐻 = (𝑥𝐴 ↦ (𝐻𝑥)))
4 offveq.2 . . . 4 (𝜑𝐹 Fn 𝐴)
5 offveq.3 . . . 4 (𝜑𝐺 Fn 𝐴)
6 offveq.1 . . . 4 (𝜑𝐴𝑉)
7 inidm 4226 . . . 4 (𝐴𝐴) = 𝐴
8 offveq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
9 offveq.6 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
104, 5, 6, 6, 7, 8, 9offval 7707 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
113, 10eqeq12d 2752 . 2 (𝜑 → (𝐻 = (𝐹f 𝑅𝐺) ↔ (𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))))
12 fvexd 6920 . . . 4 (𝜑 → (𝐻𝑥) ∈ V)
1312ralrimivw 3149 . . 3 (𝜑 → ∀𝑥𝐴 (𝐻𝑥) ∈ V)
14 mpteqb 7034 . . 3 (∀𝑥𝐴 (𝐻𝑥) ∈ V → ((𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
1513, 14syl 17 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐻𝑥)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
1611, 15bitrd 279 1 (𝜑 → (𝐻 = (𝐹f 𝑅𝐺) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479  cmpt 5224   Fn wfn 6555  cfv 6560  (class class class)co 7432  f cof 7696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698
This theorem is referenced by:  eqlkr2  39102
  Copyright terms: Public domain W3C validator