Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr2 Structured version   Visualization version   GIF version

Theorem eqlkr2 39082
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.)
Hypotheses
Ref Expression
eqlkr.d 𝐷 = (Scalar‘𝑊)
eqlkr.k 𝐾 = (Base‘𝐷)
eqlkr.t · = (.r𝐷)
eqlkr.v 𝑉 = (Base‘𝑊)
eqlkr.f 𝐹 = (LFnl‘𝑊)
eqlkr.l 𝐿 = (LKer‘𝑊)
Assertion
Ref Expression
eqlkr2 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾 𝐻 = (𝐺f · (𝑉 × {𝑟})))
Distinct variable groups:   𝐷,𝑟   𝐺,𝑟   𝐻,𝑟   𝑉,𝑟   𝐾,𝑟   · ,𝑟   𝐹,𝑟   𝐿,𝑟   𝑊,𝑟

Proof of Theorem eqlkr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqlkr.d . . 3 𝐷 = (Scalar‘𝑊)
2 eqlkr.k . . 3 𝐾 = (Base‘𝐷)
3 eqlkr.t . . 3 · = (.r𝐷)
4 eqlkr.v . . 3 𝑉 = (Base‘𝑊)
5 eqlkr.f . . 3 𝐹 = (LFnl‘𝑊)
6 eqlkr.l . . 3 𝐿 = (LKer‘𝑊)
71, 2, 3, 4, 5, 6eqlkr 39081 . 2 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
84fvexi 6921 . . . . 5 𝑉 ∈ V
98a1i 11 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝑉 ∈ V)
10 simpl1 1190 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝑊 ∈ LVec)
11 simpl2l 1225 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐺𝐹)
121, 2, 4, 5lflf 39045 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
1310, 11, 12syl2anc 584 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐺:𝑉𝐾)
1413ffnd 6738 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐺 Fn 𝑉)
15 vex 3482 . . . . 5 𝑟 ∈ V
16 fnconstg 6797 . . . . 5 (𝑟 ∈ V → (𝑉 × {𝑟}) Fn 𝑉)
1715, 16mp1i 13 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → (𝑉 × {𝑟}) Fn 𝑉)
18 simpl2r 1226 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐻𝐹)
191, 2, 4, 5lflf 39045 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → 𝐻:𝑉𝐾)
2010, 18, 19syl2anc 584 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐻:𝑉𝐾)
2120ffnd 6738 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐻 Fn 𝑉)
22 eqidd 2736 . . . 4 ((((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) ∧ 𝑥𝑉) → (𝐺𝑥) = (𝐺𝑥))
2315fvconst2 7224 . . . . 5 (𝑥𝑉 → ((𝑉 × {𝑟})‘𝑥) = 𝑟)
2423adantl 481 . . . 4 ((((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) ∧ 𝑥𝑉) → ((𝑉 × {𝑟})‘𝑥) = 𝑟)
259, 14, 17, 21, 22, 24offveqb 7724 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → (𝐻 = (𝐺f · (𝑉 × {𝑟})) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))
2625rexbidva 3175 . 2 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → (∃𝑟𝐾 𝐻 = (𝐺f · (𝑉 × {𝑟})) ↔ ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))
277, 26mpbird 257 1 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾 𝐻 = (𝐺f · (𝑉 × {𝑟})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  {csn 4631   × cxp 5687   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  Basecbs 17245  .rcmulr 17299  Scalarcsca 17301  LVecclvec 21119  LFnlclfn 39039  LKerclk 39067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lvec 21120  df-lfl 39040  df-lkr 39068
This theorem is referenced by:  lfl1dim  39103  lfl1dim2N  39104  eqlkr4  39147
  Copyright terms: Public domain W3C validator