Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr2 Structured version   Visualization version   GIF version

Theorem eqlkr2 39118
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.)
Hypotheses
Ref Expression
eqlkr.d 𝐷 = (Scalar‘𝑊)
eqlkr.k 𝐾 = (Base‘𝐷)
eqlkr.t · = (.r𝐷)
eqlkr.v 𝑉 = (Base‘𝑊)
eqlkr.f 𝐹 = (LFnl‘𝑊)
eqlkr.l 𝐿 = (LKer‘𝑊)
Assertion
Ref Expression
eqlkr2 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾 𝐻 = (𝐺f · (𝑉 × {𝑟})))
Distinct variable groups:   𝐷,𝑟   𝐺,𝑟   𝐻,𝑟   𝑉,𝑟   𝐾,𝑟   · ,𝑟   𝐹,𝑟   𝐿,𝑟   𝑊,𝑟

Proof of Theorem eqlkr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqlkr.d . . 3 𝐷 = (Scalar‘𝑊)
2 eqlkr.k . . 3 𝐾 = (Base‘𝐷)
3 eqlkr.t . . 3 · = (.r𝐷)
4 eqlkr.v . . 3 𝑉 = (Base‘𝑊)
5 eqlkr.f . . 3 𝐹 = (LFnl‘𝑊)
6 eqlkr.l . . 3 𝐿 = (LKer‘𝑊)
71, 2, 3, 4, 5, 6eqlkr 39117 . 2 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
84fvexi 6890 . . . . 5 𝑉 ∈ V
98a1i 11 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝑉 ∈ V)
10 simpl1 1192 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝑊 ∈ LVec)
11 simpl2l 1227 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐺𝐹)
121, 2, 4, 5lflf 39081 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
1310, 11, 12syl2anc 584 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐺:𝑉𝐾)
1413ffnd 6707 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐺 Fn 𝑉)
15 vex 3463 . . . . 5 𝑟 ∈ V
16 fnconstg 6766 . . . . 5 (𝑟 ∈ V → (𝑉 × {𝑟}) Fn 𝑉)
1715, 16mp1i 13 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → (𝑉 × {𝑟}) Fn 𝑉)
18 simpl2r 1228 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐻𝐹)
191, 2, 4, 5lflf 39081 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → 𝐻:𝑉𝐾)
2010, 18, 19syl2anc 584 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐻:𝑉𝐾)
2120ffnd 6707 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐻 Fn 𝑉)
22 eqidd 2736 . . . 4 ((((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) ∧ 𝑥𝑉) → (𝐺𝑥) = (𝐺𝑥))
2315fvconst2 7196 . . . . 5 (𝑥𝑉 → ((𝑉 × {𝑟})‘𝑥) = 𝑟)
2423adantl 481 . . . 4 ((((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) ∧ 𝑥𝑉) → ((𝑉 × {𝑟})‘𝑥) = 𝑟)
259, 14, 17, 21, 22, 24offveqb 7698 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → (𝐻 = (𝐺f · (𝑉 × {𝑟})) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))
2625rexbidva 3162 . 2 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → (∃𝑟𝐾 𝐻 = (𝐺f · (𝑉 × {𝑟})) ↔ ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))
277, 26mpbird 257 1 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾 𝐻 = (𝐺f · (𝑉 × {𝑟})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  {csn 4601   × cxp 5652   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274  LVecclvec 21060  LFnlclfn 39075  LKerclk 39103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-drng 20691  df-lmod 20819  df-lvec 21061  df-lfl 39076  df-lkr 39104
This theorem is referenced by:  lfl1dim  39139  lfl1dim2N  39140  eqlkr4  39183
  Copyright terms: Public domain W3C validator