Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr2 Structured version   Visualization version   GIF version

Theorem eqlkr2 38460
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.)
Hypotheses
Ref Expression
eqlkr.d 𝐷 = (Scalarβ€˜π‘Š)
eqlkr.k 𝐾 = (Baseβ€˜π·)
eqlkr.t Β· = (.rβ€˜π·)
eqlkr.v 𝑉 = (Baseβ€˜π‘Š)
eqlkr.f 𝐹 = (LFnlβ€˜π‘Š)
eqlkr.l 𝐿 = (LKerβ€˜π‘Š)
Assertion
Ref Expression
eqlkr2 ((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) β†’ βˆƒπ‘Ÿ ∈ 𝐾 𝐻 = (𝐺 ∘f Β· (𝑉 Γ— {π‘Ÿ})))
Distinct variable groups:   𝐷,π‘Ÿ   𝐺,π‘Ÿ   𝐻,π‘Ÿ   𝑉,π‘Ÿ   𝐾,π‘Ÿ   Β· ,π‘Ÿ   𝐹,π‘Ÿ   𝐿,π‘Ÿ   π‘Š,π‘Ÿ

Proof of Theorem eqlkr2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqlkr.d . . 3 𝐷 = (Scalarβ€˜π‘Š)
2 eqlkr.k . . 3 𝐾 = (Baseβ€˜π·)
3 eqlkr.t . . 3 Β· = (.rβ€˜π·)
4 eqlkr.v . . 3 𝑉 = (Baseβ€˜π‘Š)
5 eqlkr.f . . 3 𝐹 = (LFnlβ€˜π‘Š)
6 eqlkr.l . . 3 𝐿 = (LKerβ€˜π‘Š)
71, 2, 3, 4, 5, 6eqlkr 38459 . 2 ((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) β†’ βˆƒπ‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 (π»β€˜π‘₯) = ((πΊβ€˜π‘₯) Β· π‘Ÿ))
84fvexi 6895 . . . . 5 𝑉 ∈ V
98a1i 11 . . . 4 (((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) β†’ 𝑉 ∈ V)
10 simpl1 1188 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) β†’ π‘Š ∈ LVec)
11 simpl2l 1223 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) β†’ 𝐺 ∈ 𝐹)
121, 2, 4, 5lflf 38423 . . . . . 6 ((π‘Š ∈ LVec ∧ 𝐺 ∈ 𝐹) β†’ 𝐺:π‘‰βŸΆπΎ)
1310, 11, 12syl2anc 583 . . . . 5 (((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) β†’ 𝐺:π‘‰βŸΆπΎ)
1413ffnd 6708 . . . 4 (((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) β†’ 𝐺 Fn 𝑉)
15 vex 3470 . . . . 5 π‘Ÿ ∈ V
16 fnconstg 6769 . . . . 5 (π‘Ÿ ∈ V β†’ (𝑉 Γ— {π‘Ÿ}) Fn 𝑉)
1715, 16mp1i 13 . . . 4 (((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) β†’ (𝑉 Γ— {π‘Ÿ}) Fn 𝑉)
18 simpl2r 1224 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) β†’ 𝐻 ∈ 𝐹)
191, 2, 4, 5lflf 38423 . . . . . 6 ((π‘Š ∈ LVec ∧ 𝐻 ∈ 𝐹) β†’ 𝐻:π‘‰βŸΆπΎ)
2010, 18, 19syl2anc 583 . . . . 5 (((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) β†’ 𝐻:π‘‰βŸΆπΎ)
2120ffnd 6708 . . . 4 (((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) β†’ 𝐻 Fn 𝑉)
22 eqidd 2725 . . . 4 ((((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) ∧ π‘₯ ∈ 𝑉) β†’ (πΊβ€˜π‘₯) = (πΊβ€˜π‘₯))
2315fvconst2 7197 . . . . 5 (π‘₯ ∈ 𝑉 β†’ ((𝑉 Γ— {π‘Ÿ})β€˜π‘₯) = π‘Ÿ)
2423adantl 481 . . . 4 ((((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) ∧ π‘₯ ∈ 𝑉) β†’ ((𝑉 Γ— {π‘Ÿ})β€˜π‘₯) = π‘Ÿ)
259, 14, 17, 21, 22, 24offveqb 7688 . . 3 (((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) ∧ π‘Ÿ ∈ 𝐾) β†’ (𝐻 = (𝐺 ∘f Β· (𝑉 Γ— {π‘Ÿ})) ↔ βˆ€π‘₯ ∈ 𝑉 (π»β€˜π‘₯) = ((πΊβ€˜π‘₯) Β· π‘Ÿ)))
2625rexbidva 3168 . 2 ((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) β†’ (βˆƒπ‘Ÿ ∈ 𝐾 𝐻 = (𝐺 ∘f Β· (𝑉 Γ— {π‘Ÿ})) ↔ βˆƒπ‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 (π»β€˜π‘₯) = ((πΊβ€˜π‘₯) Β· π‘Ÿ)))
277, 26mpbird 257 1 ((π‘Š ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (πΏβ€˜πΊ) = (πΏβ€˜π»)) β†’ βˆƒπ‘Ÿ ∈ 𝐾 𝐻 = (𝐺 ∘f Β· (𝑉 Γ— {π‘Ÿ})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  βˆƒwrex 3062  Vcvv 3466  {csn 4620   Γ— cxp 5664   Fn wfn 6528  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   ∘f cof 7661  Basecbs 17143  .rcmulr 17197  Scalarcsca 17199  LVecclvec 20940  LFnlclfn 38417  LKerclk 38445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-0g 17386  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-grp 18856  df-minusg 18857  df-sbg 18858  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-drng 20579  df-lmod 20698  df-lvec 20941  df-lfl 38418  df-lkr 38446
This theorem is referenced by:  lfl1dim  38481  lfl1dim2N  38482  eqlkr4  38525
  Copyright terms: Public domain W3C validator