Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqlkr2 | Structured version Visualization version GIF version |
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.) |
Ref | Expression |
---|---|
eqlkr.d | ⊢ 𝐷 = (Scalar‘𝑊) |
eqlkr.k | ⊢ 𝐾 = (Base‘𝐷) |
eqlkr.t | ⊢ · = (.r‘𝐷) |
eqlkr.v | ⊢ 𝑉 = (Base‘𝑊) |
eqlkr.f | ⊢ 𝐹 = (LFnl‘𝑊) |
eqlkr.l | ⊢ 𝐿 = (LKer‘𝑊) |
Ref | Expression |
---|---|
eqlkr2 | ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘f · (𝑉 × {𝑟}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqlkr.d | . . 3 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | eqlkr.k | . . 3 ⊢ 𝐾 = (Base‘𝐷) | |
3 | eqlkr.t | . . 3 ⊢ · = (.r‘𝐷) | |
4 | eqlkr.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqlkr.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
6 | eqlkr.l | . . 3 ⊢ 𝐿 = (LKer‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | eqlkr 37110 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) |
8 | 4 | fvexi 6790 | . . . . 5 ⊢ 𝑉 ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝑉 ∈ V) |
10 | simpl1 1190 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝑊 ∈ LVec) | |
11 | simpl2l 1225 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐺 ∈ 𝐹) | |
12 | 1, 2, 4, 5 | lflf 37074 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
13 | 10, 11, 12 | syl2anc 584 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐺:𝑉⟶𝐾) |
14 | 13 | ffnd 6603 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐺 Fn 𝑉) |
15 | vex 3435 | . . . . 5 ⊢ 𝑟 ∈ V | |
16 | fnconstg 6664 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑉 × {𝑟}) Fn 𝑉) | |
17 | 15, 16 | mp1i 13 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → (𝑉 × {𝑟}) Fn 𝑉) |
18 | simpl2r 1226 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐻 ∈ 𝐹) | |
19 | 1, 2, 4, 5 | lflf 37074 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶𝐾) |
20 | 10, 18, 19 | syl2anc 584 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐻:𝑉⟶𝐾) |
21 | 20 | ffnd 6603 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐻 Fn 𝑉) |
22 | eqidd 2739 | . . . 4 ⊢ ((((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
23 | 15 | fvconst2 7081 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → ((𝑉 × {𝑟})‘𝑥) = 𝑟) |
24 | 23 | adantl 482 | . . . 4 ⊢ ((((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) ∧ 𝑥 ∈ 𝑉) → ((𝑉 × {𝑟})‘𝑥) = 𝑟) |
25 | 9, 14, 17, 21, 22, 24 | offveqb 7558 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → (𝐻 = (𝐺 ∘f · (𝑉 × {𝑟})) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟))) |
26 | 25 | rexbidva 3224 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → (∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘f · (𝑉 × {𝑟})) ↔ ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟))) |
27 | 7, 26 | mpbird 256 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘f · (𝑉 × {𝑟}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3431 {csn 4563 × cxp 5589 Fn wfn 6430 ⟶wf 6431 ‘cfv 6435 (class class class)co 7277 ∘f cof 7531 Basecbs 16910 .rcmulr 16961 Scalarcsca 16963 LVecclvec 20362 LFnlclfn 37068 LKerclk 37096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8040 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-er 8496 df-map 8615 df-en 8732 df-dom 8733 df-sdom 8734 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-sbg 18580 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-drng 19991 df-lmod 20123 df-lvec 20363 df-lfl 37069 df-lkr 37097 |
This theorem is referenced by: lfl1dim 37132 lfl1dim2N 37133 eqlkr4 37176 |
Copyright terms: Public domain | W3C validator |