| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqlkr2 | Structured version Visualization version GIF version | ||
| Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| eqlkr.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| eqlkr.k | ⊢ 𝐾 = (Base‘𝐷) |
| eqlkr.t | ⊢ · = (.r‘𝐷) |
| eqlkr.v | ⊢ 𝑉 = (Base‘𝑊) |
| eqlkr.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| eqlkr.l | ⊢ 𝐿 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| eqlkr2 | ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘f · (𝑉 × {𝑟}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqlkr.d | . . 3 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 2 | eqlkr.k | . . 3 ⊢ 𝐾 = (Base‘𝐷) | |
| 3 | eqlkr.t | . . 3 ⊢ · = (.r‘𝐷) | |
| 4 | eqlkr.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqlkr.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 6 | eqlkr.l | . . 3 ⊢ 𝐿 = (LKer‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | eqlkr 39078 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) |
| 8 | 4 | fvexi 6836 | . . . . 5 ⊢ 𝑉 ∈ V |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝑉 ∈ V) |
| 10 | simpl1 1192 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝑊 ∈ LVec) | |
| 11 | simpl2l 1227 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐺 ∈ 𝐹) | |
| 12 | 1, 2, 4, 5 | lflf 39042 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 13 | 10, 11, 12 | syl2anc 584 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐺:𝑉⟶𝐾) |
| 14 | 13 | ffnd 6653 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐺 Fn 𝑉) |
| 15 | vex 3440 | . . . . 5 ⊢ 𝑟 ∈ V | |
| 16 | fnconstg 6712 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑉 × {𝑟}) Fn 𝑉) | |
| 17 | 15, 16 | mp1i 13 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → (𝑉 × {𝑟}) Fn 𝑉) |
| 18 | simpl2r 1228 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐻 ∈ 𝐹) | |
| 19 | 1, 2, 4, 5 | lflf 39042 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶𝐾) |
| 20 | 10, 18, 19 | syl2anc 584 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐻:𝑉⟶𝐾) |
| 21 | 20 | ffnd 6653 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐻 Fn 𝑉) |
| 22 | eqidd 2730 | . . . 4 ⊢ ((((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
| 23 | 15 | fvconst2 7140 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → ((𝑉 × {𝑟})‘𝑥) = 𝑟) |
| 24 | 23 | adantl 481 | . . . 4 ⊢ ((((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) ∧ 𝑥 ∈ 𝑉) → ((𝑉 × {𝑟})‘𝑥) = 𝑟) |
| 25 | 9, 14, 17, 21, 22, 24 | offveqb 7640 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → (𝐻 = (𝐺 ∘f · (𝑉 × {𝑟})) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟))) |
| 26 | 25 | rexbidva 3151 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → (∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘f · (𝑉 × {𝑟})) ↔ ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟))) |
| 27 | 7, 26 | mpbird 257 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘f · (𝑉 × {𝑟}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3436 {csn 4577 × cxp 5617 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 Basecbs 17120 .rcmulr 17162 Scalarcsca 17164 LVecclvec 21006 LFnlclfn 39036 LKerclk 39064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-lmod 20765 df-lvec 21007 df-lfl 39037 df-lkr 39065 |
| This theorem is referenced by: lfl1dim 39100 lfl1dim2N 39101 eqlkr4 39144 |
| Copyright terms: Public domain | W3C validator |