![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqlkr2 | Structured version Visualization version GIF version |
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.) |
Ref | Expression |
---|---|
eqlkr.d | ⊢ 𝐷 = (Scalar‘𝑊) |
eqlkr.k | ⊢ 𝐾 = (Base‘𝐷) |
eqlkr.t | ⊢ · = (.r‘𝐷) |
eqlkr.v | ⊢ 𝑉 = (Base‘𝑊) |
eqlkr.f | ⊢ 𝐹 = (LFnl‘𝑊) |
eqlkr.l | ⊢ 𝐿 = (LKer‘𝑊) |
Ref | Expression |
---|---|
eqlkr2 | ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘𝑓 · (𝑉 × {𝑟}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqlkr.d | . . 3 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | eqlkr.k | . . 3 ⊢ 𝐾 = (Base‘𝐷) | |
3 | eqlkr.t | . . 3 ⊢ · = (.r‘𝐷) | |
4 | eqlkr.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqlkr.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
6 | eqlkr.l | . . 3 ⊢ 𝐿 = (LKer‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | eqlkr 35120 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟)) |
8 | 4 | fvexi 6425 | . . . . 5 ⊢ 𝑉 ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝑉 ∈ V) |
10 | simpl1 1243 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝑊 ∈ LVec) | |
11 | simpl2l 1298 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐺 ∈ 𝐹) | |
12 | 1, 2, 4, 5 | lflf 35084 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
13 | 10, 11, 12 | syl2anc 580 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐺:𝑉⟶𝐾) |
14 | 13 | ffnd 6257 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐺 Fn 𝑉) |
15 | vex 3388 | . . . . 5 ⊢ 𝑟 ∈ V | |
16 | fnconstg 6308 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑉 × {𝑟}) Fn 𝑉) | |
17 | 15, 16 | mp1i 13 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → (𝑉 × {𝑟}) Fn 𝑉) |
18 | simpl2r 1300 | . . . . . 6 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐻 ∈ 𝐹) | |
19 | 1, 2, 4, 5 | lflf 35084 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶𝐾) |
20 | 10, 18, 19 | syl2anc 580 | . . . . 5 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐻:𝑉⟶𝐾) |
21 | 20 | ffnd 6257 | . . . 4 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → 𝐻 Fn 𝑉) |
22 | eqidd 2800 | . . . 4 ⊢ ((((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) = (𝐺‘𝑥)) | |
23 | 15 | fvconst2 6698 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 → ((𝑉 × {𝑟})‘𝑥) = 𝑟) |
24 | 23 | adantl 474 | . . . 4 ⊢ ((((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) ∧ 𝑥 ∈ 𝑉) → ((𝑉 × {𝑟})‘𝑥) = 𝑟) |
25 | 9, 14, 17, 21, 22, 24 | offveqb 7153 | . . 3 ⊢ (((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) ∧ 𝑟 ∈ 𝐾) → (𝐻 = (𝐺 ∘𝑓 · (𝑉 × {𝑟})) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟))) |
26 | 25 | rexbidva 3230 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → (∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘𝑓 · (𝑉 × {𝑟})) ↔ ∃𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥) · 𝑟))) |
27 | 7, 26 | mpbird 249 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐿‘𝐺) = (𝐿‘𝐻)) → ∃𝑟 ∈ 𝐾 𝐻 = (𝐺 ∘𝑓 · (𝑉 × {𝑟}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∃wrex 3090 Vcvv 3385 {csn 4368 × cxp 5310 Fn wfn 6096 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ∘𝑓 cof 7129 Basecbs 16184 .rcmulr 16268 Scalarcsca 16270 LVecclvec 19423 LFnlclfn 35078 LKerclk 35106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-tpos 7590 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-minusg 17742 df-sbg 17743 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-oppr 18939 df-dvdsr 18957 df-unit 18958 df-invr 18988 df-drng 19067 df-lmod 19183 df-lvec 19424 df-lfl 35079 df-lkr 35107 |
This theorem is referenced by: lfl1dim 35142 lfl1dim2N 35143 eqlkr4 35186 |
Copyright terms: Public domain | W3C validator |