MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offveq Structured version   Visualization version   GIF version

Theorem offveq 7179
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
offveq.1 (𝜑𝐴𝑉)
offveq.2 (𝜑𝐹 Fn 𝐴)
offveq.3 (𝜑𝐺 Fn 𝐴)
offveq.4 (𝜑𝐻 Fn 𝐴)
offveq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
offveq.6 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
offveq.7 ((𝜑𝑥𝐴) → (𝐵𝑅𝐶) = (𝐻𝑥))
Assertion
Ref Expression
offveq (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem offveq
StepHypRef Expression
1 offveq.2 . . 3 (𝜑𝐹 Fn 𝐴)
2 offveq.3 . . 3 (𝜑𝐺 Fn 𝐴)
3 offveq.1 . . 3 (𝜑𝐴𝑉)
4 inidm 4048 . . 3 (𝐴𝐴) = 𝐴
51, 2, 3, 3, 4offn 7169 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) Fn 𝐴)
6 offveq.4 . 2 (𝜑𝐻 Fn 𝐴)
7 offveq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
8 offveq.6 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
91, 2, 3, 3, 4, 7, 8ofval 7167 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑓 𝑅𝐺)‘𝑥) = (𝐵𝑅𝐶))
10 offveq.7 . . 3 ((𝜑𝑥𝐴) → (𝐵𝑅𝐶) = (𝐻𝑥))
119, 10eqtrd 2862 . 2 ((𝜑𝑥𝐴) → ((𝐹𝑓 𝑅𝐺)‘𝑥) = (𝐻𝑥))
125, 6, 11eqfnfvd 6564 1 (𝜑 → (𝐹𝑓 𝑅𝐺) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166   Fn wfn 6119  cfv 6124  (class class class)co 6906  𝑓 cof 7156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158
This theorem is referenced by:  caofid0l  7186  caofid0r  7187  caofid1  7188  caofid2  7189  ofnegsub  11349  bddibl  24006  dvaddf  24105  plydivlem3  24450  poimirlem5  33959  poimirlem10  33964  poimirlem22  33976  ofsubid  39364  ofmul12  39365  ofdivrec  39366  ofdivcan4  39367  ofdivdiv2  39368
  Copyright terms: Public domain W3C validator