| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offveq | Structured version Visualization version GIF version | ||
| Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| offveq.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offveq.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offveq.3 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| offveq.4 | ⊢ (𝜑 → 𝐻 Fn 𝐴) |
| offveq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| offveq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) |
| offveq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) |
| Ref | Expression |
|---|---|
| offveq | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offveq.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offveq.3 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 3 | offveq.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | inidm 4178 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 5 | 1, 2, 3, 3, 4 | offn 7626 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝐴) |
| 6 | offveq.4 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝐴) | |
| 7 | offveq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
| 8 | offveq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) | |
| 9 | 1, 2, 3, 3, 4, 7, 8 | ofval 7624 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑥) = (𝐵𝑅𝐶)) |
| 10 | offveq.7 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) | |
| 11 | 9, 10 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑥) = (𝐻‘𝑥)) |
| 12 | 5, 6, 11 | eqfnfvd 6968 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 ∘f cof 7611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 |
| This theorem is referenced by: caofid0l 7646 caofid0r 7647 caofid1 7648 caofid2 7649 ofnegsub 12126 psdmul 22051 bddibl 25739 dvaddf 25843 plydivlem3 26201 poimirlem5 37615 poimirlem10 37620 poimirlem22 37632 fsuppssind 42576 ofsubid 44307 ofmul12 44308 ofdivrec 44309 ofdivcan4 44310 ofdivdiv2 44311 |
| Copyright terms: Public domain | W3C validator |