Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > offveq | Structured version Visualization version GIF version |
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
offveq.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offveq.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offveq.3 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
offveq.4 | ⊢ (𝜑 → 𝐻 Fn 𝐴) |
offveq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
offveq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) |
offveq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) |
Ref | Expression |
---|---|
offveq | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offveq.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offveq.3 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
3 | offveq.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | inidm 4153 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
5 | 1, 2, 3, 3, 4 | offn 7537 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝐴) |
6 | offveq.4 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝐴) | |
7 | offveq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
8 | offveq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) | |
9 | 1, 2, 3, 3, 4, 7, 8 | ofval 7535 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑥) = (𝐵𝑅𝐶)) |
10 | offveq.7 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) | |
11 | 9, 10 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑥) = (𝐻‘𝑥)) |
12 | 5, 6, 11 | eqfnfvd 6905 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Fn wfn 6422 ‘cfv 6427 (class class class)co 7268 ∘f cof 7522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 |
This theorem is referenced by: caofid0l 7555 caofid0r 7556 caofid1 7557 caofid2 7558 ofnegsub 11959 bddibl 24992 dvaddf 25094 plydivlem3 25443 poimirlem5 35768 poimirlem10 35773 poimirlem22 35785 fsuppssind 40268 ofsubid 41901 ofmul12 41902 ofdivrec 41903 ofdivcan4 41904 ofdivdiv2 41905 |
Copyright terms: Public domain | W3C validator |