MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offveq Structured version   Visualization version   GIF version

Theorem offveq 7659
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
offveq.1 (𝜑𝐴𝑉)
offveq.2 (𝜑𝐹 Fn 𝐴)
offveq.3 (𝜑𝐺 Fn 𝐴)
offveq.4 (𝜑𝐻 Fn 𝐴)
offveq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
offveq.6 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
offveq.7 ((𝜑𝑥𝐴) → (𝐵𝑅𝐶) = (𝐻𝑥))
Assertion
Ref Expression
offveq (𝜑 → (𝐹f 𝑅𝐺) = 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem offveq
StepHypRef Expression
1 offveq.2 . . 3 (𝜑𝐹 Fn 𝐴)
2 offveq.3 . . 3 (𝜑𝐺 Fn 𝐴)
3 offveq.1 . . 3 (𝜑𝐴𝑉)
4 inidm 4186 . . 3 (𝐴𝐴) = 𝐴
51, 2, 3, 3, 4offn 7646 . 2 (𝜑 → (𝐹f 𝑅𝐺) Fn 𝐴)
6 offveq.4 . 2 (𝜑𝐻 Fn 𝐴)
7 offveq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
8 offveq.6 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
91, 2, 3, 3, 4, 7, 8ofval 7644 . . 3 ((𝜑𝑥𝐴) → ((𝐹f 𝑅𝐺)‘𝑥) = (𝐵𝑅𝐶))
10 offveq.7 . . 3 ((𝜑𝑥𝐴) → (𝐵𝑅𝐶) = (𝐻𝑥))
119, 10eqtrd 2764 . 2 ((𝜑𝑥𝐴) → ((𝐹f 𝑅𝐺)‘𝑥) = (𝐻𝑥))
125, 6, 11eqfnfvd 6988 1 (𝜑 → (𝐹f 𝑅𝐺) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   Fn wfn 6494  cfv 6499  (class class class)co 7369  f cof 7631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633
This theorem is referenced by:  caofid0l  7666  caofid0r  7667  caofid1  7668  caofid2  7669  ofnegsub  12160  psdmul  22086  bddibl  25774  dvaddf  25878  plydivlem3  26236  poimirlem5  37612  poimirlem10  37617  poimirlem22  37629  fsuppssind  42574  ofsubid  44306  ofmul12  44307  ofdivrec  44308  ofdivcan4  44309  ofdivdiv2  44310
  Copyright terms: Public domain W3C validator