![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > offveq | Structured version Visualization version GIF version |
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
offveq.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offveq.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offveq.3 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
offveq.4 | ⊢ (𝜑 → 𝐻 Fn 𝐴) |
offveq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
offveq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) |
offveq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) |
Ref | Expression |
---|---|
offveq | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offveq.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offveq.3 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
3 | offveq.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | inidm 4218 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
5 | 1, 2, 3, 3, 4 | offn 7685 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝐴) |
6 | offveq.4 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝐴) | |
7 | offveq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
8 | offveq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) | |
9 | 1, 2, 3, 3, 4, 7, 8 | ofval 7683 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑥) = (𝐵𝑅𝐶)) |
10 | offveq.7 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) | |
11 | 9, 10 | eqtrd 2772 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑥) = (𝐻‘𝑥)) |
12 | 5, 6, 11 | eqfnfvd 7035 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Fn wfn 6538 ‘cfv 6543 (class class class)co 7411 ∘f cof 7670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 |
This theorem is referenced by: caofid0l 7703 caofid0r 7704 caofid1 7705 caofid2 7706 ofnegsub 12214 bddibl 25581 dvaddf 25683 plydivlem3 26032 poimirlem5 36796 poimirlem10 36801 poimirlem22 36813 fsuppssind 41467 ofsubid 43385 ofmul12 43386 ofdivrec 43387 ofdivcan4 43388 ofdivdiv2 43389 |
Copyright terms: Public domain | W3C validator |