| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offveq | Structured version Visualization version GIF version | ||
| Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| offveq.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offveq.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offveq.3 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| offveq.4 | ⊢ (𝜑 → 𝐻 Fn 𝐴) |
| offveq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| offveq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) |
| offveq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) |
| Ref | Expression |
|---|---|
| offveq | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offveq.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offveq.3 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 3 | offveq.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | inidm 4186 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 5 | 1, 2, 3, 3, 4 | offn 7646 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝐴) |
| 6 | offveq.4 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝐴) | |
| 7 | offveq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
| 8 | offveq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) | |
| 9 | 1, 2, 3, 3, 4, 7, 8 | ofval 7644 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑥) = (𝐵𝑅𝐶)) |
| 10 | offveq.7 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) | |
| 11 | 9, 10 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑥) = (𝐻‘𝑥)) |
| 12 | 5, 6, 11 | eqfnfvd 6988 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 |
| This theorem is referenced by: caofid0l 7666 caofid0r 7667 caofid1 7668 caofid2 7669 ofnegsub 12160 psdmul 22086 bddibl 25774 dvaddf 25878 plydivlem3 26236 poimirlem5 37612 poimirlem10 37617 poimirlem22 37629 fsuppssind 42574 ofsubid 44306 ofmul12 44307 ofdivrec 44308 ofdivcan4 44309 ofdivdiv2 44310 |
| Copyright terms: Public domain | W3C validator |