Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > offveq | Structured version Visualization version GIF version |
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
offveq.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offveq.2 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offveq.3 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
offveq.4 | ⊢ (𝜑 → 𝐻 Fn 𝐴) |
offveq.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
offveq.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) |
offveq.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) |
Ref | Expression |
---|---|
offveq | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offveq.2 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offveq.3 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
3 | offveq.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | inidm 4149 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
5 | 1, 2, 3, 3, 4 | offn 7524 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn 𝐴) |
6 | offveq.4 | . 2 ⊢ (𝜑 → 𝐻 Fn 𝐴) | |
7 | offveq.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
8 | offveq.6 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) | |
9 | 1, 2, 3, 3, 4, 7, 8 | ofval 7522 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑥) = (𝐵𝑅𝐶)) |
10 | offveq.7 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝐶) = (𝐻‘𝑥)) | |
11 | 9, 10 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f 𝑅𝐺)‘𝑥) = (𝐻‘𝑥)) |
12 | 5, 6, 11 | eqfnfvd 6894 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 |
This theorem is referenced by: caofid0l 7542 caofid0r 7543 caofid1 7544 caofid2 7545 ofnegsub 11901 bddibl 24909 dvaddf 25011 plydivlem3 25360 poimirlem5 35709 poimirlem10 35714 poimirlem22 35726 fsuppssind 40205 ofsubid 41831 ofmul12 41832 ofdivrec 41833 ofdivcan4 41834 ofdivdiv2 41835 |
Copyright terms: Public domain | W3C validator |