MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offveq Structured version   Visualization version   GIF version

Theorem offveq 7710
Description: Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
offveq.1 (𝜑𝐴𝑉)
offveq.2 (𝜑𝐹 Fn 𝐴)
offveq.3 (𝜑𝐺 Fn 𝐴)
offveq.4 (𝜑𝐻 Fn 𝐴)
offveq.5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
offveq.6 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
offveq.7 ((𝜑𝑥𝐴) → (𝐵𝑅𝐶) = (𝐻𝑥))
Assertion
Ref Expression
offveq (𝜑 → (𝐹f 𝑅𝐺) = 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem offveq
StepHypRef Expression
1 offveq.2 . . 3 (𝜑𝐹 Fn 𝐴)
2 offveq.3 . . 3 (𝜑𝐺 Fn 𝐴)
3 offveq.1 . . 3 (𝜑𝐴𝑉)
4 inidm 4217 . . 3 (𝐴𝐴) = 𝐴
51, 2, 3, 3, 4offn 7698 . 2 (𝜑 → (𝐹f 𝑅𝐺) Fn 𝐴)
6 offveq.4 . 2 (𝜑𝐻 Fn 𝐴)
7 offveq.5 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
8 offveq.6 . . . 4 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
91, 2, 3, 3, 4, 7, 8ofval 7696 . . 3 ((𝜑𝑥𝐴) → ((𝐹f 𝑅𝐺)‘𝑥) = (𝐵𝑅𝐶))
10 offveq.7 . . 3 ((𝜑𝑥𝐴) → (𝐵𝑅𝐶) = (𝐻𝑥))
119, 10eqtrd 2765 . 2 ((𝜑𝑥𝐴) → ((𝐹f 𝑅𝐺)‘𝑥) = (𝐻𝑥))
125, 6, 11eqfnfvd 7042 1 (𝜑 → (𝐹f 𝑅𝐺) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098   Fn wfn 6544  cfv 6549  (class class class)co 7419  f cof 7683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685
This theorem is referenced by:  caofid0l  7717  caofid0r  7718  caofid1  7719  caofid2  7720  ofnegsub  12243  psdmul  22113  bddibl  25813  dvaddf  25917  plydivlem3  26275  poimirlem5  37226  poimirlem10  37231  poimirlem22  37243  fsuppssind  41958  ofsubid  43900  ofmul12  43901  ofdivrec  43902  ofdivcan4  43903  ofdivdiv2  43904
  Copyright terms: Public domain W3C validator