Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omexrcl Structured version   Visualization version   GIF version

Theorem omexrcl 41648
Description: The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omexrcl.o (𝜑𝑂 ∈ OutMeas)
omexrcl.x 𝑋 = dom 𝑂
omexrcl.a (𝜑𝐴𝑋)
Assertion
Ref Expression
omexrcl (𝜑 → (𝑂𝐴) ∈ ℝ*)

Proof of Theorem omexrcl
StepHypRef Expression
1 iccssxr 12568 . 2 (0[,]+∞) ⊆ ℝ*
2 omexrcl.o . . 3 (𝜑𝑂 ∈ OutMeas)
3 omexrcl.x . . 3 𝑋 = dom 𝑂
4 omexrcl.a . . 3 (𝜑𝐴𝑋)
52, 3, 4omecl 41644 . 2 (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
61, 5sseldi 3819 1 (𝜑 → (𝑂𝐴) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  wss 3792   cuni 4671  dom cdm 5355  cfv 6135  (class class class)co 6922  0cc0 10272  +∞cpnf 10408  *cxr 10410  [,]cicc 12490  OutMeascome 41630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-xr 10415  df-icc 12494  df-ome 41631
This theorem is referenced by:  omessre  41651  caragenuncllem  41653  omeiunltfirp  41660  caratheodorylem1  41667  caratheodorylem2  41668  caragenel2d  41673  omess0  41675  caragencmpl  41676
  Copyright terms: Public domain W3C validator