Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omexrcl | Structured version Visualization version GIF version |
Description: The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omexrcl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omexrcl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omexrcl.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Ref | Expression |
---|---|
omexrcl | ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13241 | . 2 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | omexrcl.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | omexrcl.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
4 | omexrcl.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
5 | 2, 3, 4 | omecl 44297 | . 2 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
6 | 1, 5 | sselid 3928 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 ∪ cuni 4849 dom cdm 5607 ‘cfv 6465 (class class class)co 7316 0cc0 10950 +∞cpnf 11085 ℝ*cxr 11087 [,]cicc 13161 OutMeascome 44283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-1st 7877 df-2nd 7878 df-xr 11092 df-icc 13165 df-ome 44284 |
This theorem is referenced by: omessre 44304 caragenuncllem 44306 omeiunltfirp 44313 caratheodorylem1 44320 caratheodorylem2 44321 caragenel2d 44326 omess0 44328 caragencmpl 44329 |
Copyright terms: Public domain | W3C validator |