Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omexrcl Structured version   Visualization version   GIF version

Theorem omexrcl 43935
Description: The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omexrcl.o (𝜑𝑂 ∈ OutMeas)
omexrcl.x 𝑋 = dom 𝑂
omexrcl.a (𝜑𝐴𝑋)
Assertion
Ref Expression
omexrcl (𝜑 → (𝑂𝐴) ∈ ℝ*)

Proof of Theorem omexrcl
StepHypRef Expression
1 iccssxr 13091 . 2 (0[,]+∞) ⊆ ℝ*
2 omexrcl.o . . 3 (𝜑𝑂 ∈ OutMeas)
3 omexrcl.x . . 3 𝑋 = dom 𝑂
4 omexrcl.a . . 3 (𝜑𝐴𝑋)
52, 3, 4omecl 43931 . 2 (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
61, 5sselid 3915 1 (𝜑 → (𝑂𝐴) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883   cuni 4836  dom cdm 5580  cfv 6418  (class class class)co 7255  0cc0 10802  +∞cpnf 10937  *cxr 10939  [,]cicc 13011  OutMeascome 43917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-xr 10944  df-icc 13015  df-ome 43918
This theorem is referenced by:  omessre  43938  caragenuncllem  43940  omeiunltfirp  43947  caratheodorylem1  43954  caratheodorylem2  43955  caragenel2d  43960  omess0  43962  caragencmpl  43963
  Copyright terms: Public domain W3C validator