Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onintopssconn | Structured version Visualization version GIF version |
Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.) |
Ref | Expression |
---|---|
onintopssconn | ⊢ (On ∩ Top) ⊆ Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3905 | . . 3 ⊢ (𝑥 ∈ (On ∩ Top) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Top)) | |
2 | eloni 6280 | . . . . 5 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
3 | ordtopconn 34656 | . . . . 5 ⊢ (Ord 𝑥 → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑥 ∈ On → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn)) |
5 | 4 | biimpa 476 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ Top) → 𝑥 ∈ Conn) |
6 | 1, 5 | sylbi 216 | . 2 ⊢ (𝑥 ∈ (On ∩ Top) → 𝑥 ∈ Conn) |
7 | 6 | ssriv 3927 | 1 ⊢ (On ∩ Top) ⊆ Conn |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2101 ∩ cin 3888 ⊆ wss 3889 Ord word 6269 Oncon0 6270 Topctop 22070 Conncconn 22590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-ord 6273 df-on 6274 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-fv 6455 df-topgen 17182 df-top 22071 df-bases 22124 df-cld 22198 df-conn 22591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |