| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onintopssconn | Structured version Visualization version GIF version | ||
| Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| onintopssconn | ⊢ (On ∩ Top) ⊆ Conn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3932 | . . 3 ⊢ (𝑥 ∈ (On ∩ Top) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Top)) | |
| 2 | eloni 6344 | . . . . 5 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 3 | ordtopconn 36422 | . . . . 5 ⊢ (Ord 𝑥 → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑥 ∈ On → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn)) |
| 5 | 4 | biimpa 476 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ Top) → 𝑥 ∈ Conn) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑥 ∈ (On ∩ Top) → 𝑥 ∈ Conn) |
| 7 | 6 | ssriv 3952 | 1 ⊢ (On ∩ Top) ⊆ Conn |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3915 ⊆ wss 3916 Ord word 6333 Oncon0 6334 Topctop 22786 Conncconn 23304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-ord 6337 df-on 6338 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-fv 6521 df-topgen 17412 df-top 22787 df-bases 22839 df-cld 22912 df-conn 23305 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |