![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onintopssconn | Structured version Visualization version GIF version |
Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.) |
Ref | Expression |
---|---|
onintopssconn | ⊢ (On ∩ Top) ⊆ Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . 3 ⊢ (𝑥 ∈ (On ∩ Top) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Top)) | |
2 | eloni 6371 | . . . . 5 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
3 | ordtopconn 35312 | . . . . 5 ⊢ (Ord 𝑥 → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑥 ∈ On → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn)) |
5 | 4 | biimpa 477 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ Top) → 𝑥 ∈ Conn) |
6 | 1, 5 | sylbi 216 | . 2 ⊢ (𝑥 ∈ (On ∩ Top) → 𝑥 ∈ Conn) |
7 | 6 | ssriv 3985 | 1 ⊢ (On ∩ Top) ⊆ Conn |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∩ cin 3946 ⊆ wss 3947 Ord word 6360 Oncon0 6361 Topctop 22386 Conncconn 22906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-fv 6548 df-topgen 17385 df-top 22387 df-bases 22440 df-cld 22514 df-conn 22907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |