Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onintopssconn Structured version   Visualization version   GIF version

Theorem onintopssconn 36398
Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.)
Assertion
Ref Expression
onintopssconn (On ∩ Top) ⊆ Conn

Proof of Theorem onintopssconn
StepHypRef Expression
1 elin 3992 . . 3 (𝑥 ∈ (On ∩ Top) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Top))
2 eloni 6400 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
3 ordtopconn 36397 . . . . 5 (Ord 𝑥 → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn))
42, 3syl 17 . . . 4 (𝑥 ∈ On → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn))
54biimpa 476 . . 3 ((𝑥 ∈ On ∧ 𝑥 ∈ Top) → 𝑥 ∈ Conn)
61, 5sylbi 217 . 2 (𝑥 ∈ (On ∩ Top) → 𝑥 ∈ Conn)
76ssriv 4012 1 (On ∩ Top) ⊆ Conn
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  cin 3975  wss 3976  Ord word 6389  Oncon0 6390  Topctop 22912  Conncconn 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5650  df-we 5652  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-ord 6393  df-on 6394  df-suc 6396  df-iota 6520  df-fun 6570  df-fn 6571  df-fv 6576  df-topgen 17497  df-top 22913  df-bases 22966  df-cld 23040  df-conn 23433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator