Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onintopssconn Structured version   Visualization version   GIF version

Theorem onintopssconn 34657
Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.)
Assertion
Ref Expression
onintopssconn (On ∩ Top) ⊆ Conn

Proof of Theorem onintopssconn
StepHypRef Expression
1 elin 3905 . . 3 (𝑥 ∈ (On ∩ Top) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Top))
2 eloni 6280 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
3 ordtopconn 34656 . . . . 5 (Ord 𝑥 → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn))
42, 3syl 17 . . . 4 (𝑥 ∈ On → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn))
54biimpa 476 . . 3 ((𝑥 ∈ On ∧ 𝑥 ∈ Top) → 𝑥 ∈ Conn)
61, 5sylbi 216 . 2 (𝑥 ∈ (On ∩ Top) → 𝑥 ∈ Conn)
76ssriv 3927 1 (On ∩ Top) ⊆ Conn
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2101  cin 3888  wss 3889  Ord word 6269  Oncon0 6270  Topctop 22070  Conncconn 22590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-ord 6273  df-on 6274  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-fv 6455  df-topgen 17182  df-top 22071  df-bases 22124  df-cld 22198  df-conn 22591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator