| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onintopssconn | Structured version Visualization version GIF version | ||
| Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| onintopssconn | ⊢ (On ∩ Top) ⊆ Conn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3913 | . . 3 ⊢ (𝑥 ∈ (On ∩ Top) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Top)) | |
| 2 | eloni 6311 | . . . . 5 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 3 | ordtopconn 36473 | . . . . 5 ⊢ (Ord 𝑥 → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝑥 ∈ On → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn)) |
| 5 | 4 | biimpa 476 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ Top) → 𝑥 ∈ Conn) |
| 6 | 1, 5 | sylbi 217 | . 2 ⊢ (𝑥 ∈ (On ∩ Top) → 𝑥 ∈ Conn) |
| 7 | 6 | ssriv 3933 | 1 ⊢ (On ∩ Top) ⊆ Conn |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 Ord word 6300 Oncon0 6301 Topctop 22803 Conncconn 23321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 df-topgen 17342 df-top 22804 df-bases 22856 df-cld 22929 df-conn 23322 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |