Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onintopssconn Structured version   Visualization version   GIF version

Theorem onintopssconn 35313
Description: An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.)
Assertion
Ref Expression
onintopssconn (On ∩ Top) ⊆ Conn

Proof of Theorem onintopssconn
StepHypRef Expression
1 elin 3963 . . 3 (𝑥 ∈ (On ∩ Top) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Top))
2 eloni 6371 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
3 ordtopconn 35312 . . . . 5 (Ord 𝑥 → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn))
42, 3syl 17 . . . 4 (𝑥 ∈ On → (𝑥 ∈ Top ↔ 𝑥 ∈ Conn))
54biimpa 477 . . 3 ((𝑥 ∈ On ∧ 𝑥 ∈ Top) → 𝑥 ∈ Conn)
61, 5sylbi 216 . 2 (𝑥 ∈ (On ∩ Top) → 𝑥 ∈ Conn)
76ssriv 3985 1 (On ∩ Top) ⊆ Conn
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  cin 3946  wss 3947  Ord word 6360  Oncon0 6361  Topctop 22386  Conncconn 22906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-fv 6548  df-topgen 17385  df-top 22387  df-bases 22440  df-cld 22514  df-conn 22907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator