| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfval3 | Structured version Visualization version GIF version | ||
| Description: Value of the opposite functor. (Contributed by Zhi Wang, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfval3.g | ⊢ (𝜑 → 𝐹 = 〈𝐺, 𝐾〉) |
| oppfval3.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| oppfval3 | ⊢ (𝜑 → ( oppFunc ‘𝐹) = 〈𝐺, tpos 𝐾〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfval3.g | . . . 4 ⊢ (𝜑 → 𝐹 = 〈𝐺, 𝐾〉) | |
| 2 | 1 | fveq2d 6830 | . . 3 ⊢ (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘〈𝐺, 𝐾〉)) |
| 3 | df-ov 7356 | . . 3 ⊢ (𝐺 oppFunc 𝐾) = ( oppFunc ‘〈𝐺, 𝐾〉) | |
| 4 | 2, 3 | eqtr4di 2782 | . 2 ⊢ (𝜑 → ( oppFunc ‘𝐹) = (𝐺 oppFunc 𝐾)) |
| 5 | oppfval3.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 6 | 1, 5 | eqeltrrd 2829 | . . . 4 ⊢ (𝜑 → 〈𝐺, 𝐾〉 ∈ (𝐶 Func 𝐷)) |
| 7 | df-br 5096 | . . . 4 ⊢ (𝐺(𝐶 Func 𝐷)𝐾 ↔ 〈𝐺, 𝐾〉 ∈ (𝐶 Func 𝐷)) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ (𝜑 → 𝐺(𝐶 Func 𝐷)𝐾) |
| 9 | oppfval 49141 | . . 3 ⊢ (𝐺(𝐶 Func 𝐷)𝐾 → (𝐺 oppFunc 𝐾) = 〈𝐺, tpos 𝐾〉) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 oppFunc 𝐾) = 〈𝐺, tpos 𝐾〉) |
| 11 | 4, 10 | eqtrd 2764 | 1 ⊢ (𝜑 → ( oppFunc ‘𝐹) = 〈𝐺, tpos 𝐾〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 tpos ctpos 8165 Func cfunc 17780 oppFunc coppf 49127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-tpos 8166 df-map 8762 df-ixp 8832 df-func 17784 df-oppf 49128 |
| This theorem is referenced by: cofuoppf 49155 oppc1stf 49293 oppc2ndf 49294 |
| Copyright terms: Public domain | W3C validator |