Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppc1stf Structured version   Visualization version   GIF version

Theorem oppc1stf 49293
Description: The opposite functor of the first projection functor is the first projection functor of opposite categories. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
oppc1stf.o 𝑂 = (oppCat‘𝐶)
oppc1stf.p 𝑃 = (oppCat‘𝐷)
oppc1stf.c (𝜑𝐶𝑉)
oppc1stf.d (𝜑𝐷𝑊)
Assertion
Ref Expression
oppc1stf (𝜑 → ( oppFunc ‘(𝐶 1stF 𝐷)) = (𝑂 1stF 𝑃))

Proof of Theorem oppc1stf
Dummy variables 𝑥 𝑦 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppc1stf.o . 2 𝑂 = (oppCat‘𝐶)
2 oppc1stf.p . 2 𝑃 = (oppCat‘𝐷)
3 oppc1stf.c . 2 (𝜑𝐶𝑉)
4 oppc1stf.d . 2 (𝜑𝐷𝑊)
5 eqid 2729 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
65tposmpo 8203 . . . . 5 tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
7 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
87, 1oppchom 17640 . . . . . . . . 9 ((1st𝑦)(Hom ‘𝑂)(1st𝑥)) = ((1st𝑥)(Hom ‘𝐶)(1st𝑦))
9 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
109, 2oppchom 17640 . . . . . . . . 9 ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))
118, 10xpeq12i 5651 . . . . . . . 8 (((1st𝑦)(Hom ‘𝑂)(1st𝑥)) × ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥))) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
12 eqid 2729 . . . . . . . . 9 (𝑂 ×c 𝑃) = (𝑂 ×c 𝑃)
13 eqid 2729 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
141, 13oppcbas 17643 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝑂)
15 eqid 2729 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
162, 15oppcbas 17643 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝑃)
1712, 14, 16xpcbas 18103 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝑂 ×c 𝑃))
18 eqid 2729 . . . . . . . . 9 (Hom ‘𝑂) = (Hom ‘𝑂)
19 eqid 2729 . . . . . . . . 9 (Hom ‘𝑃) = (Hom ‘𝑃)
20 eqid 2729 . . . . . . . . 9 (Hom ‘(𝑂 ×c 𝑃)) = (Hom ‘(𝑂 ×c 𝑃))
21 simp2 1137 . . . . . . . . 9 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
22 simp3 1138 . . . . . . . . 9 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
2312, 17, 18, 19, 20, 21, 22xpchom 18105 . . . . . . . 8 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥) = (((1st𝑦)(Hom ‘𝑂)(1st𝑥)) × ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥))))
24 eqid 2729 . . . . . . . . 9 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
2524, 13, 15xpcbas 18103 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
26 eqid 2729 . . . . . . . . 9 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2724, 25, 7, 9, 26, 22, 21xpchom 18105 . . . . . . . 8 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
2811, 23, 273eqtr4a 2790 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥) = (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))
2928reseq2d 5934 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (1st ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)) = (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
3029mpoeq3dva 7430 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))))
316, 30eqtr4id 2783 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥))))
3231opeq2d 4834 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩ = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)))⟩)
33 simprl 770 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝐶 ∈ Cat)
34 simprr 772 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝐷 ∈ Cat)
35 eqid 2729 . . . . 5 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
3624, 25, 26, 33, 34, 351stfval 18116 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝐶 1stF 𝐷) = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩)
3724, 33, 34, 351stfcl 18122 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
3836, 37oppfval3 49143 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶 1stF 𝐷)) = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩)
391oppccat 17647 . . . . 5 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
4033, 39syl 17 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑂 ∈ Cat)
412oppccat 17647 . . . . 5 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
4234, 41syl 17 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑃 ∈ Cat)
43 eqid 2729 . . . 4 (𝑂 1stF 𝑃) = (𝑂 1stF 𝑃)
4412, 17, 20, 40, 42, 431stfval 18116 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝑂 1stF 𝑃) = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)))⟩)
4532, 38, 443eqtr4d 2774 . 2 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶 1stF 𝐷)) = (𝑂 1stF 𝑃))
46 df-1stf 18098 . 2 1stF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(1st𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩)
471, 2, 3, 4, 45, 46oppc1stflem 49292 1 (𝜑 → ( oppFunc ‘(𝐶 1stF 𝐷)) = (𝑂 1stF 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  csb 3853  cop 4585   × cxp 5621  cres 5625  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  tpos ctpos 8165  Basecbs 17139  Hom chom 17191  Catccat 17589  oppCatcoppc 17636   ×c cxpc 18093   1stF c1stf 18094   oppFunc coppf 49127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-cat 17593  df-cid 17594  df-homf 17595  df-comf 17596  df-oppc 17637  df-func 17784  df-xpc 18097  df-1stf 18098  df-oppf 49128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator