Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppc1stf Structured version   Visualization version   GIF version

Theorem oppc1stf 49320
Description: The opposite functor of the first projection functor is the first projection functor of opposite categories. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
oppc1stf.o 𝑂 = (oppCat‘𝐶)
oppc1stf.p 𝑃 = (oppCat‘𝐷)
oppc1stf.c (𝜑𝐶𝑉)
oppc1stf.d (𝜑𝐷𝑊)
Assertion
Ref Expression
oppc1stf (𝜑 → ( oppFunc ‘(𝐶 1stF 𝐷)) = (𝑂 1stF 𝑃))

Proof of Theorem oppc1stf
Dummy variables 𝑥 𝑦 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppc1stf.o . 2 𝑂 = (oppCat‘𝐶)
2 oppc1stf.p . 2 𝑃 = (oppCat‘𝐷)
3 oppc1stf.c . 2 (𝜑𝐶𝑉)
4 oppc1stf.d . 2 (𝜑𝐷𝑊)
5 eqid 2731 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
65tposmpo 8188 . . . . 5 tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
7 eqid 2731 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
87, 1oppchom 17616 . . . . . . . . 9 ((1st𝑦)(Hom ‘𝑂)(1st𝑥)) = ((1st𝑥)(Hom ‘𝐶)(1st𝑦))
9 eqid 2731 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
109, 2oppchom 17616 . . . . . . . . 9 ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))
118, 10xpeq12i 5639 . . . . . . . 8 (((1st𝑦)(Hom ‘𝑂)(1st𝑥)) × ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥))) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
12 eqid 2731 . . . . . . . . 9 (𝑂 ×c 𝑃) = (𝑂 ×c 𝑃)
13 eqid 2731 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
141, 13oppcbas 17619 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝑂)
15 eqid 2731 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
162, 15oppcbas 17619 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝑃)
1712, 14, 16xpcbas 18079 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝑂 ×c 𝑃))
18 eqid 2731 . . . . . . . . 9 (Hom ‘𝑂) = (Hom ‘𝑂)
19 eqid 2731 . . . . . . . . 9 (Hom ‘𝑃) = (Hom ‘𝑃)
20 eqid 2731 . . . . . . . . 9 (Hom ‘(𝑂 ×c 𝑃)) = (Hom ‘(𝑂 ×c 𝑃))
21 simp2 1137 . . . . . . . . 9 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
22 simp3 1138 . . . . . . . . 9 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
2312, 17, 18, 19, 20, 21, 22xpchom 18081 . . . . . . . 8 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥) = (((1st𝑦)(Hom ‘𝑂)(1st𝑥)) × ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥))))
24 eqid 2731 . . . . . . . . 9 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
2524, 13, 15xpcbas 18079 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
26 eqid 2731 . . . . . . . . 9 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2724, 25, 7, 9, 26, 22, 21xpchom 18081 . . . . . . . 8 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
2811, 23, 273eqtr4a 2792 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥) = (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))
2928reseq2d 5923 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (1st ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)) = (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
3029mpoeq3dva 7418 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))))
316, 30eqtr4id 2785 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥))))
3231opeq2d 4827 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩ = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)))⟩)
33 simprl 770 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝐶 ∈ Cat)
34 simprr 772 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝐷 ∈ Cat)
35 eqid 2731 . . . . 5 (𝐶 1stF 𝐷) = (𝐶 1stF 𝐷)
3624, 25, 26, 33, 34, 351stfval 18092 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝐶 1stF 𝐷) = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩)
3724, 33, 34, 351stfcl 18098 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝐶 1stF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐶))
3836, 37oppfval3 49170 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶 1stF 𝐷)) = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩)
391oppccat 17623 . . . . 5 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
4033, 39syl 17 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑂 ∈ Cat)
412oppccat 17623 . . . . 5 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
4234, 41syl 17 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑃 ∈ Cat)
43 eqid 2731 . . . 4 (𝑂 1stF 𝑃) = (𝑂 1stF 𝑃)
4412, 17, 20, 40, 42, 431stfval 18092 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝑂 1stF 𝑃) = ⟨(1st ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (1st ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)))⟩)
4532, 38, 443eqtr4d 2776 . 2 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶 1stF 𝐷)) = (𝑂 1stF 𝑃))
46 df-1stf 18074 . 2 1stF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(1st𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩)
471, 2, 3, 4, 45, 46oppc1stflem 49319 1 (𝜑 → ( oppFunc ‘(𝐶 1stF 𝐷)) = (𝑂 1stF 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  csb 3845  cop 4577   × cxp 5609  cres 5613  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  tpos ctpos 8150  Basecbs 17115  Hom chom 17167  Catccat 17565  oppCatcoppc 17612   ×c cxpc 18069   1stF c1stf 18070   oppFunc coppf 49154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-hom 17180  df-cco 17181  df-cat 17569  df-cid 17570  df-homf 17571  df-comf 17572  df-oppc 17613  df-func 17760  df-xpc 18073  df-1stf 18074  df-oppf 49155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator