| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2730 |
. . . 4
⊢
(oppCat‘𝐶) =
(oppCat‘𝐶) |
| 2 | | eqid 2730 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 3 | 1, 2 | oppcbas 17685 |
. . 3
⊢
(Base‘𝐶) =
(Base‘(oppCat‘𝐶)) |
| 4 | | eqid 2730 |
. . . 4
⊢
(oppCat‘𝐷) =
(oppCat‘𝐷) |
| 5 | | cofuoppf.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 6 | 5 | func1st2nd 49055 |
. . . 4
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 7 | 1, 4, 6 | funcoppc 17843 |
. . 3
⊢ (𝜑 → (1st
‘𝐹)((oppCat‘𝐶) Func (oppCat‘𝐷))tpos (2nd ‘𝐹)) |
| 8 | | eqid 2730 |
. . . 4
⊢
(oppCat‘𝐸) =
(oppCat‘𝐸) |
| 9 | | cofuoppf.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| 10 | 9 | func1st2nd 49055 |
. . . 4
⊢ (𝜑 → (1st
‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) |
| 11 | 4, 8, 10 | funcoppc 17843 |
. . 3
⊢ (𝜑 → (1st
‘𝐺)((oppCat‘𝐷) Func (oppCat‘𝐸))tpos (2nd ‘𝐺)) |
| 12 | 3, 7, 11 | cofuval2 17855 |
. 2
⊢ (𝜑 → (〈(1st
‘𝐺), tpos
(2nd ‘𝐺)〉 ∘func
〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉) =
〈((1st ‘𝐺) ∘ (1st ‘𝐹)), (𝑦 ∈ (Base‘𝐶), 𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐹)‘𝑦)tpos (2nd ‘𝐺)((1st ‘𝐹)‘𝑥)) ∘ (𝑦tpos (2nd ‘𝐹)𝑥)))〉) |
| 13 | | oppfval2 49116 |
. . . 4
⊢ (𝐺 ∈ (𝐷 Func 𝐸) → ( oppFunc ‘𝐺) = 〈(1st ‘𝐺), tpos (2nd
‘𝐺)〉) |
| 14 | 9, 13 | syl 17 |
. . 3
⊢ (𝜑 → ( oppFunc ‘𝐺) = 〈(1st
‘𝐺), tpos
(2nd ‘𝐺)〉) |
| 15 | | oppfval2 49116 |
. . . 4
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝐹) = 〈(1st ‘𝐹), tpos (2nd
‘𝐹)〉) |
| 16 | 5, 15 | syl 17 |
. . 3
⊢ (𝜑 → ( oppFunc ‘𝐹) = 〈(1st
‘𝐹), tpos
(2nd ‘𝐹)〉) |
| 17 | 14, 16 | oveq12d 7407 |
. 2
⊢ (𝜑 → (( oppFunc ‘𝐺) ∘func
( oppFunc ‘𝐹)) =
(〈(1st ‘𝐺), tpos (2nd ‘𝐺)〉
∘func 〈(1st ‘𝐹), tpos (2nd ‘𝐹)〉)) |
| 18 | | cofuoppf.k |
. . . . 5
⊢ (𝜑 → (𝐺 ∘func 𝐹) = 𝐾) |
| 19 | 2, 5, 9 | cofuval 17850 |
. . . . 5
⊢ (𝜑 → (𝐺 ∘func 𝐹) = 〈((1st
‘𝐺) ∘
(1st ‘𝐹)),
(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))〉) |
| 20 | 18, 19 | eqtr3d 2767 |
. . . 4
⊢ (𝜑 → 𝐾 = 〈((1st ‘𝐺) ∘ (1st
‘𝐹)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))〉) |
| 21 | 5, 9 | cofucl 17856 |
. . . . 5
⊢ (𝜑 → (𝐺 ∘func 𝐹) ∈ (𝐶 Func 𝐸)) |
| 22 | 18, 21 | eqeltrrd 2830 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (𝐶 Func 𝐸)) |
| 23 | 20, 22 | oppfval3 49117 |
. . 3
⊢ (𝜑 → ( oppFunc ‘𝐾) = 〈((1st
‘𝐺) ∘
(1st ‘𝐹)),
tpos (𝑥 ∈
(Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st
‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))〉) |
| 24 | | ovtpos 8222 |
. . . . . . . . 9
⊢
(((1st ‘𝐹)‘𝑦)tpos (2nd ‘𝐺)((1st ‘𝐹)‘𝑥)) = (((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) |
| 25 | | ovtpos 8222 |
. . . . . . . . 9
⊢ (𝑦tpos (2nd
‘𝐹)𝑥) = (𝑥(2nd ‘𝐹)𝑦) |
| 26 | 24, 25 | coeq12i 5829 |
. . . . . . . 8
⊢
((((1st ‘𝐹)‘𝑦)tpos (2nd ‘𝐺)((1st ‘𝐹)‘𝑥)) ∘ (𝑦tpos (2nd ‘𝐹)𝑥)) = ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)) |
| 27 | 26 | eqcomi 2739 |
. . . . . . 7
⊢
((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)) = ((((1st ‘𝐹)‘𝑦)tpos (2nd ‘𝐺)((1st ‘𝐹)‘𝑥)) ∘ (𝑦tpos (2nd ‘𝐹)𝑥)) |
| 28 | 27 | a1i 11 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)) = ((((1st ‘𝐹)‘𝑦)tpos (2nd ‘𝐺)((1st ‘𝐹)‘𝑥)) ∘ (𝑦tpos (2nd ‘𝐹)𝑥))) |
| 29 | 28 | mpoeq3ia 7469 |
. . . . 5
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐹)‘𝑦)tpos (2nd ‘𝐺)((1st ‘𝐹)‘𝑥)) ∘ (𝑦tpos (2nd ‘𝐹)𝑥))) |
| 30 | 29 | tposmpo 8244 |
. . . 4
⊢ tpos
(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦))) = (𝑦 ∈ (Base‘𝐶), 𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐹)‘𝑦)tpos (2nd ‘𝐺)((1st ‘𝐹)‘𝑥)) ∘ (𝑦tpos (2nd ‘𝐹)𝑥))) |
| 31 | 30 | opeq2i 4843 |
. . 3
⊢
〈((1st ‘𝐺) ∘ (1st ‘𝐹)), tpos (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐹)‘𝑥)(2nd ‘𝐺)((1st ‘𝐹)‘𝑦)) ∘ (𝑥(2nd ‘𝐹)𝑦)))〉 = 〈((1st
‘𝐺) ∘
(1st ‘𝐹)),
(𝑦 ∈ (Base‘𝐶), 𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐹)‘𝑦)tpos (2nd ‘𝐺)((1st ‘𝐹)‘𝑥)) ∘ (𝑦tpos (2nd ‘𝐹)𝑥)))〉 |
| 32 | 23, 31 | eqtrdi 2781 |
. 2
⊢ (𝜑 → ( oppFunc ‘𝐾) = 〈((1st
‘𝐺) ∘
(1st ‘𝐹)),
(𝑦 ∈ (Base‘𝐶), 𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐹)‘𝑦)tpos (2nd ‘𝐺)((1st ‘𝐹)‘𝑥)) ∘ (𝑦tpos (2nd ‘𝐹)𝑥)))〉) |
| 33 | 12, 17, 32 | 3eqtr4d 2775 |
1
⊢ (𝜑 → (( oppFunc ‘𝐺) ∘func
( oppFunc ‘𝐹)) = (
oppFunc ‘𝐾)) |