Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppc2ndf Structured version   Visualization version   GIF version

Theorem oppc2ndf 49450
Description: The opposite functor of the second projection functor is the second projection functor of opposite categories. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
oppc1stf.o 𝑂 = (oppCat‘𝐶)
oppc1stf.p 𝑃 = (oppCat‘𝐷)
oppc1stf.c (𝜑𝐶𝑉)
oppc1stf.d (𝜑𝐷𝑊)
Assertion
Ref Expression
oppc2ndf (𝜑 → ( oppFunc ‘(𝐶 2ndF 𝐷)) = (𝑂 2ndF 𝑃))

Proof of Theorem oppc2ndf
Dummy variables 𝑥 𝑦 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppc1stf.o . 2 𝑂 = (oppCat‘𝐶)
2 oppc1stf.p . 2 𝑃 = (oppCat‘𝐷)
3 oppc1stf.c . 2 (𝜑𝐶𝑉)
4 oppc1stf.d . 2 (𝜑𝐷𝑊)
5 eqid 2733 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
65tposmpo 8202 . . . . 5 tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
7 eqid 2733 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
87, 1oppchom 17629 . . . . . . . . 9 ((1st𝑦)(Hom ‘𝑂)(1st𝑥)) = ((1st𝑥)(Hom ‘𝐶)(1st𝑦))
9 eqid 2733 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
109, 2oppchom 17629 . . . . . . . . 9 ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))
118, 10xpeq12i 5649 . . . . . . . 8 (((1st𝑦)(Hom ‘𝑂)(1st𝑥)) × ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥))) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
12 eqid 2733 . . . . . . . . 9 (𝑂 ×c 𝑃) = (𝑂 ×c 𝑃)
13 eqid 2733 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
141, 13oppcbas 17632 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝑂)
15 eqid 2733 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
162, 15oppcbas 17632 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝑃)
1712, 14, 16xpcbas 18092 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝑂 ×c 𝑃))
18 eqid 2733 . . . . . . . . 9 (Hom ‘𝑂) = (Hom ‘𝑂)
19 eqid 2733 . . . . . . . . 9 (Hom ‘𝑃) = (Hom ‘𝑃)
20 eqid 2733 . . . . . . . . 9 (Hom ‘(𝑂 ×c 𝑃)) = (Hom ‘(𝑂 ×c 𝑃))
21 simp2 1137 . . . . . . . . 9 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
22 simp3 1138 . . . . . . . . 9 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
2312, 17, 18, 19, 20, 21, 22xpchom 18094 . . . . . . . 8 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥) = (((1st𝑦)(Hom ‘𝑂)(1st𝑥)) × ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥))))
24 eqid 2733 . . . . . . . . 9 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
2524, 13, 15xpcbas 18092 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
26 eqid 2733 . . . . . . . . 9 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2724, 25, 7, 9, 26, 22, 21xpchom 18094 . . . . . . . 8 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
2811, 23, 273eqtr4a 2794 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥) = (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))
2928reseq2d 5935 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)) = (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
3029mpoeq3dva 7432 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))))
316, 30eqtr4id 2787 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥))))
3231opeq2d 4833 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩ = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)))⟩)
33 simprl 770 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝐶 ∈ Cat)
34 simprr 772 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝐷 ∈ Cat)
35 eqid 2733 . . . . 5 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
3624, 25, 26, 33, 34, 352ndfval 18108 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝐶 2ndF 𝐷) = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩)
3724, 33, 34, 352ndfcl 18112 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
3836, 37oppfval3 49299 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶 2ndF 𝐷)) = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩)
391oppccat 17636 . . . . 5 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
4033, 39syl 17 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑂 ∈ Cat)
412oppccat 17636 . . . . 5 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
4234, 41syl 17 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑃 ∈ Cat)
43 eqid 2733 . . . 4 (𝑂 2ndF 𝑃) = (𝑂 2ndF 𝑃)
4412, 17, 20, 40, 42, 432ndfval 18108 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝑂 2ndF 𝑃) = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)))⟩)
4532, 38, 443eqtr4d 2778 . 2 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶 2ndF 𝐷)) = (𝑂 2ndF 𝑃))
46 df-2ndf 18088 . 2 2ndF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩)
471, 2, 3, 4, 45, 46oppc1stflem 49448 1 (𝜑 → ( oppFunc ‘(𝐶 2ndF 𝐷)) = (𝑂 2ndF 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  csb 3846  cop 4583   × cxp 5619  cres 5623  cfv 6489  (class class class)co 7355  cmpo 7357  1st c1st 7928  2nd c2nd 7929  tpos ctpos 8164  Basecbs 17127  Hom chom 17179  Catccat 17578  oppCatcoppc 17625   ×c cxpc 18082   2ndF c2ndf 18084   oppFunc coppf 49283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-cat 17582  df-cid 17583  df-homf 17584  df-comf 17585  df-oppc 17626  df-func 17773  df-xpc 18086  df-2ndf 18088  df-oppf 49284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator