Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppc2ndf Structured version   Visualization version   GIF version

Theorem oppc2ndf 49251
Description: The opposite functor of the second projection functor is the second projection functor of opposite categories. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
oppc1stf.o 𝑂 = (oppCat‘𝐶)
oppc1stf.p 𝑃 = (oppCat‘𝐷)
oppc1stf.c (𝜑𝐶𝑉)
oppc1stf.d (𝜑𝐷𝑊)
Assertion
Ref Expression
oppc2ndf (𝜑 → ( oppFunc ‘(𝐶 2ndF 𝐷)) = (𝑂 2ndF 𝑃))

Proof of Theorem oppc2ndf
Dummy variables 𝑥 𝑦 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppc1stf.o . 2 𝑂 = (oppCat‘𝐶)
2 oppc1stf.p . 2 𝑃 = (oppCat‘𝐷)
3 oppc1stf.c . 2 (𝜑𝐶𝑉)
4 oppc1stf.d . 2 (𝜑𝐷𝑊)
5 eqid 2729 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
65tposmpo 8219 . . . . 5 tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
7 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐶) = (Hom ‘𝐶)
87, 1oppchom 17652 . . . . . . . . 9 ((1st𝑦)(Hom ‘𝑂)(1st𝑥)) = ((1st𝑥)(Hom ‘𝐶)(1st𝑦))
9 eqid 2729 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
109, 2oppchom 17652 . . . . . . . . 9 ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥)) = ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))
118, 10xpeq12i 5659 . . . . . . . 8 (((1st𝑦)(Hom ‘𝑂)(1st𝑥)) × ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥))) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦)))
12 eqid 2729 . . . . . . . . 9 (𝑂 ×c 𝑃) = (𝑂 ×c 𝑃)
13 eqid 2729 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
141, 13oppcbas 17655 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝑂)
15 eqid 2729 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
162, 15oppcbas 17655 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝑃)
1712, 14, 16xpcbas 18115 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝑂 ×c 𝑃))
18 eqid 2729 . . . . . . . . 9 (Hom ‘𝑂) = (Hom ‘𝑂)
19 eqid 2729 . . . . . . . . 9 (Hom ‘𝑃) = (Hom ‘𝑃)
20 eqid 2729 . . . . . . . . 9 (Hom ‘(𝑂 ×c 𝑃)) = (Hom ‘(𝑂 ×c 𝑃))
21 simp2 1137 . . . . . . . . 9 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)))
22 simp3 1138 . . . . . . . . 9 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)))
2312, 17, 18, 19, 20, 21, 22xpchom 18117 . . . . . . . 8 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥) = (((1st𝑦)(Hom ‘𝑂)(1st𝑥)) × ((2nd𝑦)(Hom ‘𝑃)(2nd𝑥))))
24 eqid 2729 . . . . . . . . 9 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
2524, 13, 15xpcbas 18115 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
26 eqid 2729 . . . . . . . . 9 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
2724, 25, 7, 9, 26, 22, 21xpchom 18117 . . . . . . . 8 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦) = (((1st𝑥)(Hom ‘𝐶)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐷)(2nd𝑦))))
2811, 23, 273eqtr4a 2790 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥) = (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))
2928reseq2d 5939 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)) = (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))
3029mpoeq3dva 7446 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))))
316, 30eqtr4id 2783 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥))))
3231opeq2d 4840 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩ = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)))⟩)
33 simprl 770 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝐶 ∈ Cat)
34 simprr 772 . . . . 5 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝐷 ∈ Cat)
35 eqid 2729 . . . . 5 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
3624, 25, 26, 33, 34, 352ndfval 18131 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝐶 2ndF 𝐷) = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩)
3724, 33, 34, 352ndfcl 18135 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
3836, 37oppfval3 49100 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶 2ndF 𝐷)) = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))⟩)
391oppccat 17659 . . . . 5 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
4033, 39syl 17 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑂 ∈ Cat)
412oppccat 17659 . . . . 5 (𝐷 ∈ Cat → 𝑃 ∈ Cat)
4234, 41syl 17 . . . 4 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑃 ∈ Cat)
43 eqid 2729 . . . 4 (𝑂 2ndF 𝑃) = (𝑂 2ndF 𝑃)
4412, 17, 20, 40, 42, 432ndfval 18131 . . 3 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝑂 2ndF 𝑃) = ⟨(2nd ↾ ((Base‘𝐶) × (Base‘𝐷))), (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)))⟩)
4532, 38, 443eqtr4d 2774 . 2 ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → ( oppFunc ‘(𝐶 2ndF 𝐷)) = (𝑂 2ndF 𝑃))
46 df-2ndf 18111 . 2 2ndF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩)
471, 2, 3, 4, 45, 46oppc1stflem 49249 1 (𝜑 → ( oppFunc ‘(𝐶 2ndF 𝐷)) = (𝑂 2ndF 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  csb 3859  cop 4591   × cxp 5629  cres 5633  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  tpos ctpos 8181  Basecbs 17155  Hom chom 17207  Catccat 17601  oppCatcoppc 17648   ×c cxpc 18105   2ndF c2ndf 18107   oppFunc coppf 49084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17605  df-cid 17606  df-homf 17607  df-comf 17608  df-oppc 17649  df-func 17796  df-xpc 18109  df-2ndf 18111  df-oppf 49085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator