| Step | Hyp | Ref
| Expression |
| 1 | | oppc1stf.o |
. 2
⊢ 𝑂 = (oppCat‘𝐶) |
| 2 | | oppc1stf.p |
. 2
⊢ 𝑃 = (oppCat‘𝐷) |
| 3 | | oppc1stf.c |
. 2
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 4 | | oppc1stf.d |
. 2
⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| 5 | | eqid 2730 |
. . . . . 6
⊢ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) |
| 6 | 5 | tposmpo 8244 |
. . . . 5
⊢ tpos
(𝑥 ∈
((Base‘𝐶) ×
(Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd
↾ (𝑥(Hom
‘(𝐶
×c 𝐷))𝑦))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) |
| 7 | | eqid 2730 |
. . . . . . . . . 10
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 8 | 7, 1 | oppchom 17682 |
. . . . . . . . 9
⊢
((1st ‘𝑦)(Hom ‘𝑂)(1st ‘𝑥)) = ((1st ‘𝑥)(Hom ‘𝐶)(1st ‘𝑦)) |
| 9 | | eqid 2730 |
. . . . . . . . . 10
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 10 | 9, 2 | oppchom 17682 |
. . . . . . . . 9
⊢
((2nd ‘𝑦)(Hom ‘𝑃)(2nd ‘𝑥)) = ((2nd ‘𝑥)(Hom ‘𝐷)(2nd ‘𝑦)) |
| 11 | 8, 10 | xpeq12i 5668 |
. . . . . . . 8
⊢
(((1st ‘𝑦)(Hom ‘𝑂)(1st ‘𝑥)) × ((2nd ‘𝑦)(Hom ‘𝑃)(2nd ‘𝑥))) = (((1st ‘𝑥)(Hom ‘𝐶)(1st ‘𝑦)) × ((2nd ‘𝑥)(Hom ‘𝐷)(2nd ‘𝑦))) |
| 12 | | eqid 2730 |
. . . . . . . . 9
⊢ (𝑂 ×c
𝑃) = (𝑂 ×c 𝑃) |
| 13 | | eqid 2730 |
. . . . . . . . . . 11
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 14 | 1, 13 | oppcbas 17685 |
. . . . . . . . . 10
⊢
(Base‘𝐶) =
(Base‘𝑂) |
| 15 | | eqid 2730 |
. . . . . . . . . . 11
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 16 | 2, 15 | oppcbas 17685 |
. . . . . . . . . 10
⊢
(Base‘𝐷) =
(Base‘𝑃) |
| 17 | 12, 14, 16 | xpcbas 18145 |
. . . . . . . . 9
⊢
((Base‘𝐶)
× (Base‘𝐷)) =
(Base‘(𝑂
×c 𝑃)) |
| 18 | | eqid 2730 |
. . . . . . . . 9
⊢ (Hom
‘𝑂) = (Hom
‘𝑂) |
| 19 | | eqid 2730 |
. . . . . . . . 9
⊢ (Hom
‘𝑃) = (Hom
‘𝑃) |
| 20 | | eqid 2730 |
. . . . . . . . 9
⊢ (Hom
‘(𝑂
×c 𝑃)) = (Hom ‘(𝑂 ×c 𝑃)) |
| 21 | | simp2 1137 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
| 22 | | simp3 1138 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
| 23 | 12, 17, 18, 19, 20, 21, 22 | xpchom 18147 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥) = (((1st ‘𝑦)(Hom ‘𝑂)(1st ‘𝑥)) × ((2nd ‘𝑦)(Hom ‘𝑃)(2nd ‘𝑥)))) |
| 24 | | eqid 2730 |
. . . . . . . . 9
⊢ (𝐶 ×c
𝐷) = (𝐶 ×c 𝐷) |
| 25 | 24, 13, 15 | xpcbas 18145 |
. . . . . . . . 9
⊢
((Base‘𝐶)
× (Base‘𝐷)) =
(Base‘(𝐶
×c 𝐷)) |
| 26 | | eqid 2730 |
. . . . . . . . 9
⊢ (Hom
‘(𝐶
×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) |
| 27 | 24, 25, 7, 9, 26, 22, 21 | xpchom 18147 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦) = (((1st ‘𝑥)(Hom ‘𝐶)(1st ‘𝑦)) × ((2nd ‘𝑥)(Hom ‘𝐷)(2nd ‘𝑦)))) |
| 28 | 11, 23, 27 | 3eqtr4a 2791 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥) = (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)) |
| 29 | 28 | reseq2d 5952 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ∧ 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷))) → (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)) = (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) |
| 30 | 29 | mpoeq3dva 7468 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦)))) |
| 31 | 6, 30 | eqtr4id 2784 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → tpos (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑥(Hom ‘(𝐶 ×c 𝐷))𝑦))) = (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)))) |
| 32 | 31 | opeq2d 4846 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 〈(2nd
↾ ((Base‘𝐶)
× (Base‘𝐷))),
tpos (𝑥 ∈
((Base‘𝐶) ×
(Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd
↾ (𝑥(Hom
‘(𝐶
×c 𝐷))𝑦)))〉 = 〈(2nd ↾
((Base‘𝐶) ×
(Base‘𝐷))), (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd ↾ (𝑦(Hom ‘(𝑂 ×c 𝑃))𝑥)))〉) |
| 33 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝐶 ∈ Cat) |
| 34 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝐷 ∈ Cat) |
| 35 | | eqid 2730 |
. . . . 5
⊢ (𝐶
2ndF 𝐷) = (𝐶 2ndF 𝐷) |
| 36 | 24, 25, 26, 33, 34, 35 | 2ndfval 18161 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝐶 2ndF 𝐷) = 〈(2nd
↾ ((Base‘𝐶)
× (Base‘𝐷))),
(𝑥 ∈
((Base‘𝐶) ×
(Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd
↾ (𝑥(Hom
‘(𝐶
×c 𝐷))𝑦)))〉) |
| 37 | 24, 33, 34, 35 | 2ndfcl 18165 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷)) |
| 38 | 36, 37 | oppfval3 49115 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (oppFunc‘(𝐶
2ndF 𝐷)) = 〈(2nd ↾
((Base‘𝐶) ×
(Base‘𝐷))), tpos
(𝑥 ∈
((Base‘𝐶) ×
(Base‘𝐷)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd
↾ (𝑥(Hom
‘(𝐶
×c 𝐷))𝑦)))〉) |
| 39 | 1 | oppccat 17689 |
. . . . 5
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 40 | 33, 39 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑂 ∈ Cat) |
| 41 | 2 | oppccat 17689 |
. . . . 5
⊢ (𝐷 ∈ Cat → 𝑃 ∈ Cat) |
| 42 | 34, 41 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → 𝑃 ∈ Cat) |
| 43 | | eqid 2730 |
. . . 4
⊢ (𝑂
2ndF 𝑃) = (𝑂 2ndF 𝑃) |
| 44 | 12, 17, 20, 40, 42, 43 | 2ndfval 18161 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (𝑂 2ndF 𝑃) = 〈(2nd
↾ ((Base‘𝐶)
× (Base‘𝐷))),
(𝑦 ∈
((Base‘𝐶) ×
(Base‘𝐷)), 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐷)) ↦ (2nd
↾ (𝑦(Hom
‘(𝑂
×c 𝑃))𝑥)))〉) |
| 45 | 32, 38, 44 | 3eqtr4d 2775 |
. 2
⊢ ((𝜑 ∧ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) → (oppFunc‘(𝐶
2ndF 𝐷)) = (𝑂 2ndF 𝑃)) |
| 46 | | df-2ndf 18141 |
. 2
⊢
2ndF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦
⦋((Base‘𝑐) × (Base‘𝑑)) / 𝑏⦌〈(2nd ↾
𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))〉) |
| 47 | 1, 2, 3, 4, 45, 46 | oppc1stflem 49258 |
1
⊢ (𝜑 → (oppFunc‘(𝐶
2ndF 𝐷)) = (𝑂 2ndF 𝑃)) |