Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddunssN Structured version   Visualization version   GIF version

Theorem paddunssN 39769
Description: Projective subspace sum includes the set union of its arguments. (Contributed by NM, 12-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddunssN ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑋 + 𝑌))

Proof of Theorem paddunssN
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4158 . 2 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)})
2 eqid 2734 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2734 . . 3 (join‘𝐾) = (join‘𝐾)
4 padd0.a . . 3 𝐴 = (Atoms‘𝐾)
5 padd0.p . . 3 + = (+𝑃𝐾)
62, 3, 4, 5paddval 39759 . 2 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)}))
71, 6sseqtrrid 4007 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋𝑌) ⊆ (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  {crab 3419  cun 3929  wss 3931   class class class wbr 5123  cfv 6541  (class class class)co 7413  lecple 17280  joincjn 18327  Atomscatm 39223  +𝑃cpadd 39756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-padd 39757
This theorem is referenced by:  pclunN  39859  paddunN  39888  pclfinclN  39911
  Copyright terms: Public domain W3C validator