Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd2at2 Structured version   Visualization version   GIF version

Theorem elpadd2at2 37800
Description: Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpadd2at2 ((𝐾 ∈ Lat ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ 𝑆 (𝑄 𝑅)))

Proof of Theorem elpadd2at2
StepHypRef Expression
1 paddfval.l . . . 4 = (le‘𝐾)
2 paddfval.j . . . 4 = (join‘𝐾)
3 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 paddfval.p . . . 4 + = (+𝑃𝐾)
51, 2, 3, 4elpadd2at 37799 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))
653adant3r3 1182 . 2 ((𝐾 ∈ Lat ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))
7 simpr3 1194 . . 3 ((𝐾 ∈ Lat ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
87biantrurd 532 . 2 ((𝐾 ∈ Lat ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 (𝑄 𝑅) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))
96, 8bitr4d 281 1 ((𝐾 ∈ Lat ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ 𝑆 (𝑄 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  {csn 4566   class class class wbr 5078  cfv 6430  (class class class)co 7268  lecple 16950  joincjn 18010  Latclat 18130  Atomscatm 37256  +𝑃cpadd 37788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-lub 18045  df-join 18047  df-lat 18131  df-ats 37260  df-padd 37789
This theorem is referenced by:  pmodlem1  37839
  Copyright terms: Public domain W3C validator