Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpadd2at2 | Structured version Visualization version GIF version |
Description: Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012.) |
Ref | Expression |
---|---|
paddfval.l | ⊢ ≤ = (le‘𝐾) |
paddfval.j | ⊢ ∨ = (join‘𝐾) |
paddfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
paddfval.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
elpadd2at2 | ⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paddfval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | paddfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | paddfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | paddfval.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
5 | 1, 2, 3, 4 | elpadd2at 38020 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
6 | 5 | 3adant3r3 1184 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
7 | simpr3 1196 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ 𝐴) | |
8 | 7 | biantrurd 534 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑆 ≤ (𝑄 ∨ 𝑅) ↔ (𝑆 ∈ 𝐴 ∧ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
9 | 6, 8 | bitr4d 282 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 {csn 4565 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 lecple 17018 joincjn 18078 Latclat 18198 Atomscatm 37477 +𝑃cpadd 38009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-lub 18113 df-join 18115 df-lat 18199 df-ats 37481 df-padd 38010 |
This theorem is referenced by: pmodlem1 38060 |
Copyright terms: Public domain | W3C validator |