Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd2at2 Structured version   Visualization version   GIF version

Theorem elpadd2at2 39801
Description: Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpadd2at2 ((𝐾 ∈ Lat ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ 𝑆 (𝑄 𝑅)))

Proof of Theorem elpadd2at2
StepHypRef Expression
1 paddfval.l . . . 4 = (le‘𝐾)
2 paddfval.j . . . 4 = (join‘𝐾)
3 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 paddfval.p . . . 4 + = (+𝑃𝐾)
51, 2, 3, 4elpadd2at 39800 . . 3 ((𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))
653adant3r3 1185 . 2 ((𝐾 ∈ Lat ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))
7 simpr3 1197 . . 3 ((𝐾 ∈ Lat ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
87biantrurd 532 . 2 ((𝐾 ∈ Lat ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 (𝑄 𝑅) ↔ (𝑆𝐴𝑆 (𝑄 𝑅))))
96, 8bitr4d 282 1 ((𝐾 ∈ Lat ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 ∈ ({𝑄} + {𝑅}) ↔ 𝑆 (𝑄 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Latclat 18390  Atomscatm 39256  +𝑃cpadd 39789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-lub 18305  df-join 18307  df-lat 18391  df-ats 39260  df-padd 39790
This theorem is referenced by:  pmodlem1  39840
  Copyright terms: Public domain W3C validator