![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phssip | Structured version Visualization version GIF version |
Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
Ref | Expression |
---|---|
phssip.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
phssip.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
phssip.i | ⊢ · = (·if‘𝑊) |
phssip.p | ⊢ 𝑃 = (·if‘𝑋) |
Ref | Expression |
---|---|
phssip | ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
2 | eqid 2735 | . . . 4 ⊢ (·𝑖‘𝑋) = (·𝑖‘𝑋) | |
3 | phssip.p | . . . 4 ⊢ 𝑃 = (·if‘𝑋) | |
4 | 1, 2, 3 | ipffval 21684 | . . 3 ⊢ 𝑃 = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) |
5 | phllmod 21666 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
6 | phssip.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 6 | lsssubg 20973 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
8 | 5, 7 | sylan 580 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
9 | phssip.x | . . . . . . 7 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
10 | 9 | subgbas 19161 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋)) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
12 | eqidd 2736 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) | |
13 | 11, 11, 12 | mpoeq123dv 7508 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
14 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | 14 | subgss 19158 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
16 | 8, 15 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
17 | resmpo 7553 | . . . . 5 ⊢ ((𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ⊆ (Base‘𝑊)) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦))) | |
18 | 16, 16, 17 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
19 | eqid 2735 | . . . . . . . 8 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
20 | 9, 19, 2 | ssipeq 21692 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → (·𝑖‘𝑋) = (·𝑖‘𝑊)) |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (·𝑖‘𝑋) = (·𝑖‘𝑊)) |
22 | 21 | oveqd 7448 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥(·𝑖‘𝑋)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) |
23 | 22 | mpoeq3dv 7512 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
24 | 13, 18, 23 | 3eqtr4rd 2786 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
25 | 4, 24 | eqtrid 2787 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
26 | phssip.i | . . . . 5 ⊢ · = (·if‘𝑊) | |
27 | 14, 19, 26 | ipffval 21684 | . . . 4 ⊢ · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) |
28 | 27 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
29 | 28 | reseq1d 5999 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ( · ↾ (𝑈 × 𝑈)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
30 | 25, 29 | eqtr4d 2778 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 × cxp 5687 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17245 ↾s cress 17274 ·𝑖cip 17303 SubGrpcsubg 19151 LModclmod 20875 LSubSpclss 20947 PreHilcphl 21660 ·ifcipf 21661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-ip 17316 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-mgp 20153 df-ur 20200 df-ring 20253 df-lmod 20877 df-lss 20948 df-lvec 21120 df-phl 21662 df-ipf 21663 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |