![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phssip | Structured version Visualization version GIF version |
Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
Ref | Expression |
---|---|
phssip.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
phssip.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
phssip.i | ⊢ · = (·if‘𝑊) |
phssip.p | ⊢ 𝑃 = (·if‘𝑋) |
Ref | Expression |
---|---|
phssip | ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
2 | eqid 2740 | . . . 4 ⊢ (·𝑖‘𝑋) = (·𝑖‘𝑋) | |
3 | phssip.p | . . . 4 ⊢ 𝑃 = (·if‘𝑋) | |
4 | 1, 2, 3 | ipffval 21689 | . . 3 ⊢ 𝑃 = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) |
5 | phllmod 21671 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
6 | phssip.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 6 | lsssubg 20978 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
8 | 5, 7 | sylan 579 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
9 | phssip.x | . . . . . . 7 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
10 | 9 | subgbas 19170 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋)) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
12 | eqidd 2741 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) | |
13 | 11, 11, 12 | mpoeq123dv 7525 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
14 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | 14 | subgss 19167 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
16 | 8, 15 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
17 | resmpo 7570 | . . . . 5 ⊢ ((𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ⊆ (Base‘𝑊)) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦))) | |
18 | 16, 16, 17 | syl2anc 583 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
19 | eqid 2740 | . . . . . . . 8 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
20 | 9, 19, 2 | ssipeq 21697 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → (·𝑖‘𝑋) = (·𝑖‘𝑊)) |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (·𝑖‘𝑋) = (·𝑖‘𝑊)) |
22 | 21 | oveqd 7465 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥(·𝑖‘𝑋)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) |
23 | 22 | mpoeq3dv 7529 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
24 | 13, 18, 23 | 3eqtr4rd 2791 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
25 | 4, 24 | eqtrid 2792 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
26 | phssip.i | . . . . 5 ⊢ · = (·if‘𝑊) | |
27 | 14, 19, 26 | ipffval 21689 | . . . 4 ⊢ · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) |
28 | 27 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
29 | 28 | reseq1d 6008 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ( · ↾ (𝑈 × 𝑈)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
30 | 25, 29 | eqtr4d 2783 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 × cxp 5698 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Basecbs 17258 ↾s cress 17287 ·𝑖cip 17316 SubGrpcsubg 19160 LModclmod 20880 LSubSpclss 20952 PreHilcphl 21665 ·ifcipf 21666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-ip 17329 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-mgp 20162 df-ur 20209 df-ring 20262 df-lmod 20882 df-lss 20953 df-lvec 21125 df-phl 21667 df-ipf 21668 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |