MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phssip Structured version   Visualization version   GIF version

Theorem phssip 21583
Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.)
Hypotheses
Ref Expression
phssip.x 𝑋 = (𝑊s 𝑈)
phssip.s 𝑆 = (LSubSp‘𝑊)
phssip.i · = (·if𝑊)
phssip.p 𝑃 = (·if𝑋)
Assertion
Ref Expression
phssip ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈)))

Proof of Theorem phssip
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑋) = (Base‘𝑋)
2 eqid 2729 . . . 4 (·𝑖𝑋) = (·𝑖𝑋)
3 phssip.p . . . 4 𝑃 = (·if𝑋)
41, 2, 3ipffval 21573 . . 3 𝑃 = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖𝑋)𝑦))
5 phllmod 21555 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
6 phssip.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
76lsssubg 20878 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
85, 7sylan 580 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
9 phssip.x . . . . . . 7 𝑋 = (𝑊s 𝑈)
109subgbas 19027 . . . . . 6 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
118, 10syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
12 eqidd 2730 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑥(·𝑖𝑊)𝑦) = (𝑥(·𝑖𝑊)𝑦))
1311, 11, 12mpoeq123dv 7428 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(·𝑖𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖𝑊)𝑦)))
14 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1514subgss 19024 . . . . . 6 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
168, 15syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
17 resmpo 7473 . . . . 5 ((𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ⊆ (Base‘𝑊)) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(·𝑖𝑊)𝑦)))
1816, 16, 17syl2anc 584 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(·𝑖𝑊)𝑦)))
19 eqid 2729 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
209, 19, 2ssipeq 21581 . . . . . . 7 (𝑈𝑆 → (·𝑖𝑋) = (·𝑖𝑊))
2120adantl 481 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑊))
2221oveqd 7370 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑥(·𝑖𝑋)𝑦) = (𝑥(·𝑖𝑊)𝑦))
2322mpoeq3dv 7432 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖𝑋)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖𝑊)𝑦)))
2413, 18, 233eqtr4rd 2775 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖𝑋)𝑦)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ↾ (𝑈 × 𝑈)))
254, 24eqtrid 2776 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑃 = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ↾ (𝑈 × 𝑈)))
26 phssip.i . . . . 5 · = (·if𝑊)
2714, 19, 26ipffval 21573 . . . 4 · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦))
2827a1i 11 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)))
2928reseq1d 5933 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ( · ↾ (𝑈 × 𝑈)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ↾ (𝑈 × 𝑈)))
3025, 29eqtr4d 2767 1 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3905   × cxp 5621  cres 5625  cfv 6486  (class class class)co 7353  cmpo 7355  Basecbs 17138  s cress 17159  ·𝑖cip 17184  SubGrpcsubg 19017  LModclmod 20781  LSubSpclss 20852  PreHilcphl 21549  ·ifcipf 21550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853  df-lvec 21025  df-phl 21551  df-ipf 21552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator