| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phssip | Structured version Visualization version GIF version | ||
| Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
| Ref | Expression |
|---|---|
| phssip.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| phssip.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| phssip.i | ⊢ · = (·if‘𝑊) |
| phssip.p | ⊢ 𝑃 = (·if‘𝑋) |
| Ref | Expression |
|---|---|
| phssip | ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 2 | eqid 2735 | . . . 4 ⊢ (·𝑖‘𝑋) = (·𝑖‘𝑋) | |
| 3 | phssip.p | . . . 4 ⊢ 𝑃 = (·if‘𝑋) | |
| 4 | 1, 2, 3 | ipffval 21608 | . . 3 ⊢ 𝑃 = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) |
| 5 | phllmod 21590 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 6 | phssip.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 6 | lsssubg 20914 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 8 | 5, 7 | sylan 580 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 9 | phssip.x | . . . . . . 7 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 10 | 9 | subgbas 19113 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋)) |
| 11 | 8, 10 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
| 12 | eqidd 2736 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) | |
| 13 | 11, 11, 12 | mpoeq123dv 7482 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 14 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 14 | subgss 19110 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
| 16 | 8, 15 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
| 17 | resmpo 7527 | . . . . 5 ⊢ ((𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ⊆ (Base‘𝑊)) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦))) | |
| 18 | 16, 16, 17 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 19 | eqid 2735 | . . . . . . . 8 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 20 | 9, 19, 2 | ssipeq 21616 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → (·𝑖‘𝑋) = (·𝑖‘𝑊)) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (·𝑖‘𝑋) = (·𝑖‘𝑊)) |
| 22 | 21 | oveqd 7422 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥(·𝑖‘𝑋)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) |
| 23 | 22 | mpoeq3dv 7486 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 24 | 13, 18, 23 | 3eqtr4rd 2781 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
| 25 | 4, 24 | eqtrid 2782 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
| 26 | phssip.i | . . . . 5 ⊢ · = (·if‘𝑊) | |
| 27 | 14, 19, 26 | ipffval 21608 | . . . 4 ⊢ · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) |
| 28 | 27 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 29 | 28 | reseq1d 5965 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ( · ↾ (𝑈 × 𝑈)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
| 30 | 25, 29 | eqtr4d 2773 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 × cxp 5652 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 Basecbs 17228 ↾s cress 17251 ·𝑖cip 17276 SubGrpcsubg 19103 LModclmod 20817 LSubSpclss 20888 PreHilcphl 21584 ·ifcipf 21585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-ip 17289 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-mgp 20101 df-ur 20142 df-ring 20195 df-lmod 20819 df-lss 20889 df-lvec 21061 df-phl 21586 df-ipf 21587 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |