| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phssip | Structured version Visualization version GIF version | ||
| Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
| Ref | Expression |
|---|---|
| phssip.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| phssip.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| phssip.i | ⊢ · = (·if‘𝑊) |
| phssip.p | ⊢ 𝑃 = (·if‘𝑋) |
| Ref | Expression |
|---|---|
| phssip | ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 2 | eqid 2729 | . . . 4 ⊢ (·𝑖‘𝑋) = (·𝑖‘𝑋) | |
| 3 | phssip.p | . . . 4 ⊢ 𝑃 = (·if‘𝑋) | |
| 4 | 1, 2, 3 | ipffval 21557 | . . 3 ⊢ 𝑃 = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) |
| 5 | phllmod 21539 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 6 | phssip.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 6 | lsssubg 20863 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 8 | 5, 7 | sylan 580 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 9 | phssip.x | . . . . . . 7 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 10 | 9 | subgbas 19062 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋)) |
| 11 | 8, 10 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
| 12 | eqidd 2730 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) | |
| 13 | 11, 11, 12 | mpoeq123dv 7464 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 14 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 14 | subgss 19059 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
| 16 | 8, 15 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
| 17 | resmpo 7509 | . . . . 5 ⊢ ((𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ⊆ (Base‘𝑊)) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦))) | |
| 18 | 16, 16, 17 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 19 | eqid 2729 | . . . . . . . 8 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 20 | 9, 19, 2 | ssipeq 21565 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → (·𝑖‘𝑋) = (·𝑖‘𝑊)) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (·𝑖‘𝑋) = (·𝑖‘𝑊)) |
| 22 | 21 | oveqd 7404 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥(·𝑖‘𝑋)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) |
| 23 | 22 | mpoeq3dv 7468 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 24 | 13, 18, 23 | 3eqtr4rd 2775 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
| 25 | 4, 24 | eqtrid 2776 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
| 26 | phssip.i | . . . . 5 ⊢ · = (·if‘𝑊) | |
| 27 | 14, 19, 26 | ipffval 21557 | . . . 4 ⊢ · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) |
| 28 | 27 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 29 | 28 | reseq1d 5949 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ( · ↾ (𝑈 × 𝑈)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
| 30 | 25, 29 | eqtr4d 2767 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 Basecbs 17179 ↾s cress 17200 ·𝑖cip 17225 SubGrpcsubg 19052 LModclmod 20766 LSubSpclss 20837 PreHilcphl 21533 ·ifcipf 21534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-ip 17238 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-mgp 20050 df-ur 20091 df-ring 20144 df-lmod 20768 df-lss 20838 df-lvec 21010 df-phl 21535 df-ipf 21536 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |