| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phssip | Structured version Visualization version GIF version | ||
| Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.) |
| Ref | Expression |
|---|---|
| phssip.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| phssip.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| phssip.i | ⊢ · = (·if‘𝑊) |
| phssip.p | ⊢ 𝑃 = (·if‘𝑋) |
| Ref | Expression |
|---|---|
| phssip | ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 2 | eqid 2731 | . . . 4 ⊢ (·𝑖‘𝑋) = (·𝑖‘𝑋) | |
| 3 | phssip.p | . . . 4 ⊢ 𝑃 = (·if‘𝑋) | |
| 4 | 1, 2, 3 | ipffval 21580 | . . 3 ⊢ 𝑃 = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) |
| 5 | phllmod 21562 | . . . . . . 7 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 6 | phssip.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 7 | 6 | lsssubg 20885 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 8 | 5, 7 | sylan 580 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 9 | phssip.x | . . . . . . 7 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 10 | 9 | subgbas 19038 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋)) |
| 11 | 8, 10 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
| 12 | eqidd 2732 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) | |
| 13 | 11, 11, 12 | mpoeq123dv 7416 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 14 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 15 | 14 | subgss 19035 | . . . . . 6 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊)) |
| 16 | 8, 15 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
| 17 | resmpo 7461 | . . . . 5 ⊢ ((𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ⊆ (Base‘𝑊)) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦))) | |
| 18 | 16, 16, 17 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 19 | eqid 2731 | . . . . . . . 8 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 20 | 9, 19, 2 | ssipeq 21588 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑆 → (·𝑖‘𝑋) = (·𝑖‘𝑊)) |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (·𝑖‘𝑋) = (·𝑖‘𝑊)) |
| 22 | 21 | oveqd 7358 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥(·𝑖‘𝑋)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) |
| 23 | 22 | mpoeq3dv 7420 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 24 | 13, 18, 23 | 3eqtr4rd 2777 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖‘𝑋)𝑦)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
| 25 | 4, 24 | eqtrid 2778 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
| 26 | phssip.i | . . . . 5 ⊢ · = (·if‘𝑊) | |
| 27 | 14, 19, 26 | ipffval 21580 | . . . 4 ⊢ · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) |
| 28 | 27 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦))) |
| 29 | 28 | reseq1d 5922 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → ( · ↾ (𝑈 × 𝑈)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) ↾ (𝑈 × 𝑈))) |
| 30 | 25, 29 | eqtr4d 2769 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 × cxp 5609 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 Basecbs 17115 ↾s cress 17136 ·𝑖cip 17161 SubGrpcsubg 19028 LModclmod 20788 LSubSpclss 20859 PreHilcphl 21556 ·ifcipf 21557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-ip 17174 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-mgp 20054 df-ur 20095 df-ring 20148 df-lmod 20790 df-lss 20860 df-lvec 21032 df-phl 21558 df-ipf 21559 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |