MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phssip Structured version   Visualization version   GIF version

Theorem phssip 20796
Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008.) (Revised by AV, 19-Oct-2021.)
Hypotheses
Ref Expression
phssip.x 𝑋 = (𝑊s 𝑈)
phssip.s 𝑆 = (LSubSp‘𝑊)
phssip.i · = (·if𝑊)
phssip.p 𝑃 = (·if𝑋)
Assertion
Ref Expression
phssip ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈)))

Proof of Theorem phssip
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 (Base‘𝑋) = (Base‘𝑋)
2 eqid 2821 . . . 4 (·𝑖𝑋) = (·𝑖𝑋)
3 phssip.p . . . 4 𝑃 = (·if𝑋)
41, 2, 3ipffval 20786 . . 3 𝑃 = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖𝑋)𝑦))
5 phllmod 20768 . . . . . . 7 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
6 phssip.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
76lsssubg 19723 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
85, 7sylan 582 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
9 phssip.x . . . . . . 7 𝑋 = (𝑊s 𝑈)
109subgbas 18277 . . . . . 6 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
118, 10syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
12 eqidd 2822 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑥(·𝑖𝑊)𝑦) = (𝑥(·𝑖𝑊)𝑦))
1311, 11, 12mpoeq123dv 7223 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(·𝑖𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖𝑊)𝑦)))
14 eqid 2821 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1514subgss 18274 . . . . . 6 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
168, 15syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
17 resmpo 7266 . . . . 5 ((𝑈 ⊆ (Base‘𝑊) ∧ 𝑈 ⊆ (Base‘𝑊)) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(·𝑖𝑊)𝑦)))
1816, 16, 17syl2anc 586 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ↾ (𝑈 × 𝑈)) = (𝑥𝑈, 𝑦𝑈 ↦ (𝑥(·𝑖𝑊)𝑦)))
19 eqid 2821 . . . . . . . 8 (·𝑖𝑊) = (·𝑖𝑊)
209, 19, 2ssipeq 20794 . . . . . . 7 (𝑈𝑆 → (·𝑖𝑋) = (·𝑖𝑊))
2120adantl 484 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑊))
2221oveqd 7167 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑥(·𝑖𝑋)𝑦) = (𝑥(·𝑖𝑊)𝑦))
2322mpoeq3dv 7227 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖𝑋)𝑦)) = (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖𝑊)𝑦)))
2413, 18, 233eqtr4rd 2867 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑥 ∈ (Base‘𝑋), 𝑦 ∈ (Base‘𝑋) ↦ (𝑥(·𝑖𝑋)𝑦)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ↾ (𝑈 × 𝑈)))
254, 24syl5eq 2868 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑃 = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ↾ (𝑈 × 𝑈)))
26 phssip.i . . . . 5 · = (·if𝑊)
2714, 19, 26ipffval 20786 . . . 4 · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦))
2827a1i 11 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → · = (𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)))
2928reseq1d 5847 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ( · ↾ (𝑈 × 𝑈)) = ((𝑥 ∈ (Base‘𝑊), 𝑦 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖𝑊)𝑦)) ↾ (𝑈 × 𝑈)))
3025, 29eqtr4d 2859 1 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑃 = ( · ↾ (𝑈 × 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wss 3936   × cxp 5548  cres 5552  cfv 6350  (class class class)co 7150  cmpo 7152  Basecbs 16477  s cress 16478  ·𝑖cip 16564  SubGrpcsubg 18267  LModclmod 19628  LSubSpclss 19697  PreHilcphl 20762  ·ifcipf 20763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-ip 16577  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-lss 19698  df-lvec 19869  df-phl 20764  df-ipf 20765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator