| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipsubdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipsubdir.m | ⊢ − = (-g‘𝑊) |
| ipsubdir.s | ⊢ 𝑆 = (-g‘𝐹) |
| Ref | Expression |
|---|---|
| ipsubdi | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) | |
| 2 | simpr1 1195 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
| 3 | phllmod 21546 | . . . . . . . 8 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 5 | lmodgrp 20780 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ Grp) |
| 7 | simpr2 1196 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
| 8 | simpr3 1197 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 9 | phllmhm.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 10 | ipsubdir.m | . . . . . . 7 ⊢ − = (-g‘𝑊) | |
| 11 | 9, 10 | grpsubcl 18959 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 − 𝐶) ∈ 𝑉) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 − 𝐶) ∈ 𝑉) |
| 13 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 14 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 15 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 16 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 17 | 13, 14, 9, 15, 16 | ipdi 21556 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ (𝐵 − 𝐶) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , ((𝐵 − 𝐶)(+g‘𝑊)𝐶)) = ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶))) |
| 18 | 1, 2, 12, 8, 17 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , ((𝐵 − 𝐶)(+g‘𝑊)𝐶)) = ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶))) |
| 19 | 9, 15, 10 | grpnpcan 18971 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐵 − 𝐶)(+g‘𝑊)𝐶) = 𝐵) |
| 20 | 6, 7, 8, 19 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐵 − 𝐶)(+g‘𝑊)𝐶) = 𝐵) |
| 21 | 20 | oveq2d 7406 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , ((𝐵 − 𝐶)(+g‘𝑊)𝐶)) = (𝐴 , 𝐵)) |
| 22 | 18, 21 | eqtr3d 2767 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵)) |
| 23 | 13 | lmodfgrp 20782 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 24 | 4, 23 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹 ∈ Grp) |
| 25 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 26 | 13, 14, 9, 25 | ipcl 21549 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹)) |
| 27 | 1, 2, 7, 26 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐵) ∈ (Base‘𝐹)) |
| 28 | 13, 14, 9, 25 | ipcl 21549 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 29 | 1, 2, 8, 28 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 30 | 13, 14, 9, 25 | ipcl 21549 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ (𝐵 − 𝐶) ∈ 𝑉) → (𝐴 , (𝐵 − 𝐶)) ∈ (Base‘𝐹)) |
| 31 | 1, 2, 12, 30 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) ∈ (Base‘𝐹)) |
| 32 | ipsubdir.s | . . . . 5 ⊢ 𝑆 = (-g‘𝐹) | |
| 33 | 25, 16, 32 | grpsubadd 18967 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , (𝐵 − 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 − 𝐶)) ↔ ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵))) |
| 34 | 24, 27, 29, 31, 33 | syl13anc 1374 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 − 𝐶)) ↔ ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵))) |
| 35 | 22, 34 | mpbird 257 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 − 𝐶))) |
| 36 | 35 | eqcomd 2736 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Scalarcsca 17230 ·𝑖cip 17232 Grpcgrp 18872 -gcsg 18874 LModclmod 20773 PreHilcphl 21540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-minusg 18876 df-sbg 18877 df-ghm 19152 df-mgp 20057 df-ur 20098 df-ring 20151 df-oppr 20253 df-rhm 20388 df-staf 20755 df-srng 20756 df-lmod 20775 df-lmhm 20936 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-phl 21542 |
| This theorem is referenced by: ip2subdi 21560 ip2eq 21569 cphsubdi 25116 |
| Copyright terms: Public domain | W3C validator |