MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipsubdi Structured version   Visualization version   GIF version

Theorem ipsubdi 21528
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
Assertion
Ref Expression
ipsubdi ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)))

Proof of Theorem ipsubdi
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
2 simpr1 1195 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
3 phllmod 21515 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
43adantr 480 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
5 lmodgrp 20749 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
64, 5syl 17 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ Grp)
7 simpr2 1196 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
8 simpr3 1197 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
9 phllmhm.v . . . . . . 7 𝑉 = (Base‘𝑊)
10 ipsubdir.m . . . . . . 7 = (-g𝑊)
119, 10grpsubcl 18928 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝐶𝑉) → (𝐵 𝐶) ∈ 𝑉)
126, 7, 8, 11syl3anc 1373 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 𝐶) ∈ 𝑉)
13 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 eqid 2729 . . . . . 6 (+g𝑊) = (+g𝑊)
16 eqid 2729 . . . . . 6 (+g𝐹) = (+g𝐹)
1713, 14, 9, 15, 16ipdi 21525 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉 ∧ (𝐵 𝐶) ∈ 𝑉𝐶𝑉)) → (𝐴 , ((𝐵 𝐶)(+g𝑊)𝐶)) = ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)))
181, 2, 12, 8, 17syl13anc 1374 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , ((𝐵 𝐶)(+g𝑊)𝐶)) = ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)))
199, 15, 10grpnpcan 18940 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝐶𝑉) → ((𝐵 𝐶)(+g𝑊)𝐶) = 𝐵)
206, 7, 8, 19syl3anc 1373 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐵 𝐶)(+g𝑊)𝐶) = 𝐵)
2120oveq2d 7385 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , ((𝐵 𝐶)(+g𝑊)𝐶)) = (𝐴 , 𝐵))
2218, 21eqtr3d 2766 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵))
2313lmodfgrp 20751 . . . . 5 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
244, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐹 ∈ Grp)
25 eqid 2729 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
2613, 14, 9, 25ipcl 21518 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹))
271, 2, 7, 26syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐵) ∈ (Base‘𝐹))
2813, 14, 9, 25ipcl 21518 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
291, 2, 8, 28syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
3013, 14, 9, 25ipcl 21518 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉 ∧ (𝐵 𝐶) ∈ 𝑉) → (𝐴 , (𝐵 𝐶)) ∈ (Base‘𝐹))
311, 2, 12, 30syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 𝐶)) ∈ (Base‘𝐹))
32 ipsubdir.s . . . . 5 𝑆 = (-g𝐹)
3325, 16, 32grpsubadd 18936 . . . 4 ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , (𝐵 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 𝐶)) ↔ ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵)))
3424, 27, 29, 31, 33syl13anc 1374 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 𝐶)) ↔ ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵)))
3522, 34mpbird 257 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 𝐶)))
3635eqcomd 2735 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199  ·𝑖cip 17201  Grpcgrp 18841  -gcsg 18843  LModclmod 20742  PreHilcphl 21509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-minusg 18845  df-sbg 18846  df-ghm 19121  df-mgp 20026  df-ur 20067  df-ring 20120  df-oppr 20222  df-rhm 20357  df-staf 20724  df-srng 20725  df-lmod 20744  df-lmhm 20905  df-lvec 20986  df-sra 21056  df-rgmod 21057  df-phl 21511
This theorem is referenced by:  ip2subdi  21529  ip2eq  21538  cphsubdi  25085
  Copyright terms: Public domain W3C validator