MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipsubdi Structured version   Visualization version   GIF version

Theorem ipsubdi 20605
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
Assertion
Ref Expression
ipsubdi ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)))

Proof of Theorem ipsubdi
StepHypRef Expression
1 simpl 486 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
2 simpr1 1196 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
3 phllmod 20592 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
43adantr 484 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
5 lmodgrp 19906 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
64, 5syl 17 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ Grp)
7 simpr2 1197 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
8 simpr3 1198 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
9 phllmhm.v . . . . . . 7 𝑉 = (Base‘𝑊)
10 ipsubdir.m . . . . . . 7 = (-g𝑊)
119, 10grpsubcl 18443 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝐶𝑉) → (𝐵 𝐶) ∈ 𝑉)
126, 7, 8, 11syl3anc 1373 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 𝐶) ∈ 𝑉)
13 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 eqid 2737 . . . . . 6 (+g𝑊) = (+g𝑊)
16 eqid 2737 . . . . . 6 (+g𝐹) = (+g𝐹)
1713, 14, 9, 15, 16ipdi 20602 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉 ∧ (𝐵 𝐶) ∈ 𝑉𝐶𝑉)) → (𝐴 , ((𝐵 𝐶)(+g𝑊)𝐶)) = ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)))
181, 2, 12, 8, 17syl13anc 1374 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , ((𝐵 𝐶)(+g𝑊)𝐶)) = ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)))
199, 15, 10grpnpcan 18455 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝐶𝑉) → ((𝐵 𝐶)(+g𝑊)𝐶) = 𝐵)
206, 7, 8, 19syl3anc 1373 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐵 𝐶)(+g𝑊)𝐶) = 𝐵)
2120oveq2d 7229 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , ((𝐵 𝐶)(+g𝑊)𝐶)) = (𝐴 , 𝐵))
2218, 21eqtr3d 2779 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵))
2313lmodfgrp 19908 . . . . 5 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
244, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐹 ∈ Grp)
25 eqid 2737 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
2613, 14, 9, 25ipcl 20595 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹))
271, 2, 7, 26syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐵) ∈ (Base‘𝐹))
2813, 14, 9, 25ipcl 20595 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
291, 2, 8, 28syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
3013, 14, 9, 25ipcl 20595 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉 ∧ (𝐵 𝐶) ∈ 𝑉) → (𝐴 , (𝐵 𝐶)) ∈ (Base‘𝐹))
311, 2, 12, 30syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 𝐶)) ∈ (Base‘𝐹))
32 ipsubdir.s . . . . 5 𝑆 = (-g𝐹)
3325, 16, 32grpsubadd 18451 . . . 4 ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , (𝐵 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 𝐶)) ↔ ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵)))
3424, 27, 29, 31, 33syl13anc 1374 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 𝐶)) ↔ ((𝐴 , (𝐵 𝐶))(+g𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵)))
3522, 34mpbird 260 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 𝐶)))
3635eqcomd 2743 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , (𝐵 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  Scalarcsca 16805  ·𝑖cip 16807  Grpcgrp 18365  -gcsg 18367  LModclmod 19899  PreHilcphl 20586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-grp 18368  df-minusg 18369  df-sbg 18370  df-ghm 18620  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-rnghom 19735  df-staf 19881  df-srng 19882  df-lmod 19901  df-lmhm 20059  df-lvec 20140  df-sra 20209  df-rgmod 20210  df-phl 20588
This theorem is referenced by:  ip2subdi  20606  ip2eq  20615  cphsubdi  24106
  Copyright terms: Public domain W3C validator