| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipsubdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipsubdir.m | ⊢ − = (-g‘𝑊) |
| ipsubdir.s | ⊢ 𝑆 = (-g‘𝐹) |
| Ref | Expression |
|---|---|
| ipsubdi | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) | |
| 2 | simpr1 1195 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
| 3 | phllmod 21595 | . . . . . . . 8 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 5 | lmodgrp 20829 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ Grp) |
| 7 | simpr2 1196 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
| 8 | simpr3 1197 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 9 | phllmhm.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 10 | ipsubdir.m | . . . . . . 7 ⊢ − = (-g‘𝑊) | |
| 11 | 9, 10 | grpsubcl 19008 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 − 𝐶) ∈ 𝑉) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 − 𝐶) ∈ 𝑉) |
| 13 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 14 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 15 | eqid 2736 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 16 | eqid 2736 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 17 | 13, 14, 9, 15, 16 | ipdi 21605 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ (𝐵 − 𝐶) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , ((𝐵 − 𝐶)(+g‘𝑊)𝐶)) = ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶))) |
| 18 | 1, 2, 12, 8, 17 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , ((𝐵 − 𝐶)(+g‘𝑊)𝐶)) = ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶))) |
| 19 | 9, 15, 10 | grpnpcan 19020 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐵 − 𝐶)(+g‘𝑊)𝐶) = 𝐵) |
| 20 | 6, 7, 8, 19 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐵 − 𝐶)(+g‘𝑊)𝐶) = 𝐵) |
| 21 | 20 | oveq2d 7426 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , ((𝐵 − 𝐶)(+g‘𝑊)𝐶)) = (𝐴 , 𝐵)) |
| 22 | 18, 21 | eqtr3d 2773 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵)) |
| 23 | 13 | lmodfgrp 20831 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 24 | 4, 23 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹 ∈ Grp) |
| 25 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 26 | 13, 14, 9, 25 | ipcl 21598 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹)) |
| 27 | 1, 2, 7, 26 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐵) ∈ (Base‘𝐹)) |
| 28 | 13, 14, 9, 25 | ipcl 21598 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 29 | 1, 2, 8, 28 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 30 | 13, 14, 9, 25 | ipcl 21598 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ (𝐵 − 𝐶) ∈ 𝑉) → (𝐴 , (𝐵 − 𝐶)) ∈ (Base‘𝐹)) |
| 31 | 1, 2, 12, 30 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) ∈ (Base‘𝐹)) |
| 32 | ipsubdir.s | . . . . 5 ⊢ 𝑆 = (-g‘𝐹) | |
| 33 | 25, 16, 32 | grpsubadd 19016 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , (𝐵 − 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 − 𝐶)) ↔ ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵))) |
| 34 | 24, 27, 29, 31, 33 | syl13anc 1374 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 − 𝐶)) ↔ ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵))) |
| 35 | 22, 34 | mpbird 257 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 − 𝐶))) |
| 36 | 35 | eqcomd 2742 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Scalarcsca 17279 ·𝑖cip 17281 Grpcgrp 18921 -gcsg 18923 LModclmod 20822 PreHilcphl 21589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-minusg 18925 df-sbg 18926 df-ghm 19201 df-mgp 20106 df-ur 20147 df-ring 20200 df-oppr 20302 df-rhm 20437 df-staf 20804 df-srng 20805 df-lmod 20824 df-lmhm 20985 df-lvec 21066 df-sra 21136 df-rgmod 21137 df-phl 21591 |
| This theorem is referenced by: ip2subdi 21609 ip2eq 21618 cphsubdi 25166 |
| Copyright terms: Public domain | W3C validator |