![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipsubdi | Structured version Visualization version GIF version |
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipsubdir.m | ⊢ − = (-g‘𝑊) |
ipsubdir.s | ⊢ 𝑆 = (-g‘𝐹) |
Ref | Expression |
---|---|
ipsubdi | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) | |
2 | simpr1 1194 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
3 | phllmod 21116 | . . . . . . . 8 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
4 | 3 | adantr 481 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
5 | lmodgrp 20427 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ Grp) |
7 | simpr2 1195 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
8 | simpr3 1196 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
9 | phllmhm.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
10 | ipsubdir.m | . . . . . . 7 ⊢ − = (-g‘𝑊) | |
11 | 9, 10 | grpsubcl 18877 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 − 𝐶) ∈ 𝑉) |
12 | 6, 7, 8, 11 | syl3anc 1371 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 − 𝐶) ∈ 𝑉) |
13 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
14 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
15 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
16 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
17 | 13, 14, 9, 15, 16 | ipdi 21126 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ (𝐵 − 𝐶) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , ((𝐵 − 𝐶)(+g‘𝑊)𝐶)) = ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶))) |
18 | 1, 2, 12, 8, 17 | syl13anc 1372 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , ((𝐵 − 𝐶)(+g‘𝑊)𝐶)) = ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶))) |
19 | 9, 15, 10 | grpnpcan 18889 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐵 − 𝐶)(+g‘𝑊)𝐶) = 𝐵) |
20 | 6, 7, 8, 19 | syl3anc 1371 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐵 − 𝐶)(+g‘𝑊)𝐶) = 𝐵) |
21 | 20 | oveq2d 7409 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , ((𝐵 − 𝐶)(+g‘𝑊)𝐶)) = (𝐴 , 𝐵)) |
22 | 18, 21 | eqtr3d 2773 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵)) |
23 | 13 | lmodfgrp 20429 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
24 | 4, 23 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹 ∈ Grp) |
25 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
26 | 13, 14, 9, 25 | ipcl 21119 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ (Base‘𝐹)) |
27 | 1, 2, 7, 26 | syl3anc 1371 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐵) ∈ (Base‘𝐹)) |
28 | 13, 14, 9, 25 | ipcl 21119 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
29 | 1, 2, 8, 28 | syl3anc 1371 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
30 | 13, 14, 9, 25 | ipcl 21119 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ (𝐵 − 𝐶) ∈ 𝑉) → (𝐴 , (𝐵 − 𝐶)) ∈ (Base‘𝐹)) |
31 | 1, 2, 12, 30 | syl3anc 1371 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) ∈ (Base‘𝐹)) |
32 | ipsubdir.s | . . . . 5 ⊢ 𝑆 = (-g‘𝐹) | |
33 | 25, 16, 32 | grpsubadd 18885 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐵) ∈ (Base‘𝐹) ∧ (𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐴 , (𝐵 − 𝐶)) ∈ (Base‘𝐹))) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 − 𝐶)) ↔ ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵))) |
34 | 24, 27, 29, 31, 33 | syl13anc 1372 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 − 𝐶)) ↔ ((𝐴 , (𝐵 − 𝐶))(+g‘𝐹)(𝐴 , 𝐶)) = (𝐴 , 𝐵))) |
35 | 22, 34 | mpbird 256 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶)) = (𝐴 , (𝐵 − 𝐶))) |
36 | 35 | eqcomd 2737 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , (𝐵 − 𝐶)) = ((𝐴 , 𝐵)𝑆(𝐴 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 +gcplusg 17179 Scalarcsca 17182 ·𝑖cip 17184 Grpcgrp 18794 -gcsg 18796 LModclmod 20420 PreHilcphl 21110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-tpos 8193 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-0g 17369 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-mhm 18647 df-grp 18797 df-minusg 18798 df-sbg 18799 df-ghm 19056 df-mgp 19947 df-ur 19964 df-ring 20016 df-oppr 20102 df-rnghom 20201 df-staf 20402 df-srng 20403 df-lmod 20422 df-lmhm 20582 df-lvec 20663 df-sra 20734 df-rgmod 20735 df-phl 21112 |
This theorem is referenced by: ip2subdi 21130 ip2eq 21139 cphsubdi 24655 |
Copyright terms: Public domain | W3C validator |