MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2eq Structured version   Visualization version   GIF version

Theorem ip2eq 21618
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
ip2eq.h , = (·𝑖𝑊)
ip2eq.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
ip2eq ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥, ,   𝑥,𝑉   𝑥,𝑊

Proof of Theorem ip2eq
StepHypRef Expression
1 oveq2 7418 . . 3 (𝐴 = 𝐵 → (𝑥 , 𝐴) = (𝑥 , 𝐵))
21ralrimivw 3137 . 2 (𝐴 = 𝐵 → ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵))
3 phllmod 21595 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
4 ip2eq.v . . . . . 6 𝑉 = (Base‘𝑊)
5 eqid 2736 . . . . . 6 (-g𝑊) = (-g𝑊)
64, 5lmodvsubcl 20869 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) ∈ 𝑉)
73, 6syl3an1 1163 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) ∈ 𝑉)
8 oveq1 7417 . . . . . 6 (𝑥 = (𝐴(-g𝑊)𝐵) → (𝑥 , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐴))
9 oveq1 7417 . . . . . 6 (𝑥 = (𝐴(-g𝑊)𝐵) → (𝑥 , 𝐵) = ((𝐴(-g𝑊)𝐵) , 𝐵))
108, 9eqeq12d 2752 . . . . 5 (𝑥 = (𝐴(-g𝑊)𝐵) → ((𝑥 , 𝐴) = (𝑥 , 𝐵) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
1110rspcv 3602 . . . 4 ((𝐴(-g𝑊)𝐵) ∈ 𝑉 → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
127, 11syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
13 simp1 1136 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ PreHil)
14 simp2 1137 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
15 simp3 1138 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
16 eqid 2736 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
17 ip2eq.h . . . . . . . 8 , = (·𝑖𝑊)
18 eqid 2736 . . . . . . . 8 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
1916, 17, 4, 5, 18ipsubdi 21608 . . . . . . 7 ((𝑊 ∈ PreHil ∧ ((𝐴(-g𝑊)𝐵) ∈ 𝑉𝐴𝑉𝐵𝑉)) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)))
2013, 7, 14, 15, 19syl13anc 1374 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)))
2120eqeq1d 2738 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊))))
22 eqid 2736 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
23 eqid 2736 . . . . . . 7 (0g𝑊) = (0g𝑊)
2416, 17, 4, 22, 23ipeq0 21603 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2513, 7, 24syl2anc 584 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2621, 25bitr3d 281 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2733ad2ant1 1133 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ LMod)
2816lmodfgrp 20831 . . . . . 6 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
2927, 28syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (Scalar‘𝑊) ∈ Grp)
30 eqid 2736 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3116, 17, 4, 30ipcl 21598 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉𝐴𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)))
3213, 7, 14, 31syl3anc 1373 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)))
3316, 17, 4, 30ipcl 21598 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
3413, 7, 15, 33syl3anc 1373 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
3530, 22, 18grpsubeq0 19014 . . . . 5 (((Scalar‘𝑊) ∈ Grp ∧ ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊))) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
3629, 32, 34, 35syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
37 lmodgrp 20829 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
383, 37syl 17 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ Grp)
394, 23, 5grpsubeq0 19014 . . . . 5 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) = (0g𝑊) ↔ 𝐴 = 𝐵))
4038, 39syl3an1 1163 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) = (0g𝑊) ↔ 𝐴 = 𝐵))
4126, 36, 403bitr3d 309 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵) ↔ 𝐴 = 𝐵))
4212, 41sylibd 239 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → 𝐴 = 𝐵))
432, 42impbid2 226 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cfv 6536  (class class class)co 7410  Basecbs 17233  Scalarcsca 17279  ·𝑖cip 17281  0gc0g 17458  Grpcgrp 18921  -gcsg 18923  LModclmod 20822  PreHilcphl 21589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-ghm 19201  df-mgp 20106  df-ur 20147  df-ring 20200  df-oppr 20302  df-rhm 20437  df-staf 20804  df-srng 20805  df-lmod 20824  df-lmhm 20985  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-phl 21591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator