Proof of Theorem ip2eq
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7418 |
. . 3
⊢ (𝐴 = 𝐵 → (𝑥 , 𝐴) = (𝑥 , 𝐵)) |
| 2 | 1 | ralrimivw 3137 |
. 2
⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)) |
| 3 | | phllmod 21595 |
. . . . 5
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| 4 | | ip2eq.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
| 5 | | eqid 2736 |
. . . . . 6
⊢
(-g‘𝑊) = (-g‘𝑊) |
| 6 | 4, 5 | lmodvsubcl 20869 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(-g‘𝑊)𝐵) ∈ 𝑉) |
| 7 | 3, 6 | syl3an1 1163 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(-g‘𝑊)𝐵) ∈ 𝑉) |
| 8 | | oveq1 7417 |
. . . . . 6
⊢ (𝑥 = (𝐴(-g‘𝑊)𝐵) → (𝑥 , 𝐴) = ((𝐴(-g‘𝑊)𝐵) , 𝐴)) |
| 9 | | oveq1 7417 |
. . . . . 6
⊢ (𝑥 = (𝐴(-g‘𝑊)𝐵) → (𝑥 , 𝐵) = ((𝐴(-g‘𝑊)𝐵) , 𝐵)) |
| 10 | 8, 9 | eqeq12d 2752 |
. . . . 5
⊢ (𝑥 = (𝐴(-g‘𝑊)𝐵) → ((𝑥 , 𝐴) = (𝑥 , 𝐵) ↔ ((𝐴(-g‘𝑊)𝐵) , 𝐴) = ((𝐴(-g‘𝑊)𝐵) , 𝐵))) |
| 11 | 10 | rspcv 3602 |
. . . 4
⊢ ((𝐴(-g‘𝑊)𝐵) ∈ 𝑉 → (∀𝑥 ∈ 𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g‘𝑊)𝐵) , 𝐴) = ((𝐴(-g‘𝑊)𝐵) , 𝐵))) |
| 12 | 7, 11 | syl 17 |
. . 3
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∀𝑥 ∈ 𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g‘𝑊)𝐵) , 𝐴) = ((𝐴(-g‘𝑊)𝐵) , 𝐵))) |
| 13 | | simp1 1136 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ PreHil) |
| 14 | | simp2 1137 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
| 15 | | simp3 1138 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) |
| 16 | | eqid 2736 |
. . . . . . . 8
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 17 | | ip2eq.h |
. . . . . . . 8
⊢ , =
(·𝑖‘𝑊) |
| 18 | | eqid 2736 |
. . . . . . . 8
⊢
(-g‘(Scalar‘𝑊)) =
(-g‘(Scalar‘𝑊)) |
| 19 | 16, 17, 4, 5, 18 | ipsubdi 21608 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ ((𝐴(-g‘𝑊)𝐵) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ((𝐴(-g‘𝑊)𝐵) , (𝐴(-g‘𝑊)𝐵)) = (((𝐴(-g‘𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g‘𝑊)𝐵) , 𝐵))) |
| 20 | 13, 7, 14, 15, 19 | syl13anc 1374 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴(-g‘𝑊)𝐵) , (𝐴(-g‘𝑊)𝐵)) = (((𝐴(-g‘𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g‘𝑊)𝐵) , 𝐵))) |
| 21 | 20 | eqeq1d 2738 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((𝐴(-g‘𝑊)𝐵) , (𝐴(-g‘𝑊)𝐵)) =
(0g‘(Scalar‘𝑊)) ↔ (((𝐴(-g‘𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g‘𝑊)𝐵) , 𝐵)) =
(0g‘(Scalar‘𝑊)))) |
| 22 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
| 23 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 24 | 16, 17, 4, 22, 23 | ipeq0 21603 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ (𝐴(-g‘𝑊)𝐵) ∈ 𝑉) → (((𝐴(-g‘𝑊)𝐵) , (𝐴(-g‘𝑊)𝐵)) =
(0g‘(Scalar‘𝑊)) ↔ (𝐴(-g‘𝑊)𝐵) = (0g‘𝑊))) |
| 25 | 13, 7, 24 | syl2anc 584 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((𝐴(-g‘𝑊)𝐵) , (𝐴(-g‘𝑊)𝐵)) =
(0g‘(Scalar‘𝑊)) ↔ (𝐴(-g‘𝑊)𝐵) = (0g‘𝑊))) |
| 26 | 21, 25 | bitr3d 281 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((((𝐴(-g‘𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g‘𝑊)𝐵) , 𝐵)) =
(0g‘(Scalar‘𝑊)) ↔ (𝐴(-g‘𝑊)𝐵) = (0g‘𝑊))) |
| 27 | 3 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 28 | 16 | lmodfgrp 20831 |
. . . . . 6
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Grp) |
| 29 | 27, 28 | syl 17 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (Scalar‘𝑊) ∈ Grp) |
| 30 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
| 31 | 16, 17, 4, 30 | ipcl 21598 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ (𝐴(-g‘𝑊)𝐵) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ((𝐴(-g‘𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊))) |
| 32 | 13, 7, 14, 31 | syl3anc 1373 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴(-g‘𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊))) |
| 33 | 16, 17, 4, 30 | ipcl 21598 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ (𝐴(-g‘𝑊)𝐵) ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴(-g‘𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊))) |
| 34 | 13, 7, 15, 33 | syl3anc 1373 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴(-g‘𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊))) |
| 35 | 30, 22, 18 | grpsubeq0 19014 |
. . . . 5
⊢
(((Scalar‘𝑊)
∈ Grp ∧ ((𝐴(-g‘𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐴(-g‘𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊))) → ((((𝐴(-g‘𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g‘𝑊)𝐵) , 𝐵)) =
(0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g‘𝑊)𝐵) , 𝐴) = ((𝐴(-g‘𝑊)𝐵) , 𝐵))) |
| 36 | 29, 32, 34, 35 | syl3anc 1373 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((((𝐴(-g‘𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g‘𝑊)𝐵) , 𝐵)) =
(0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g‘𝑊)𝐵) , 𝐴) = ((𝐴(-g‘𝑊)𝐵) , 𝐵))) |
| 37 | | lmodgrp 20829 |
. . . . . 6
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| 38 | 3, 37 | syl 17 |
. . . . 5
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ Grp) |
| 39 | 4, 23, 5 | grpsubeq0 19014 |
. . . . 5
⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴(-g‘𝑊)𝐵) = (0g‘𝑊) ↔ 𝐴 = 𝐵)) |
| 40 | 38, 39 | syl3an1 1163 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴(-g‘𝑊)𝐵) = (0g‘𝑊) ↔ 𝐴 = 𝐵)) |
| 41 | 26, 36, 40 | 3bitr3d 309 |
. . 3
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (((𝐴(-g‘𝑊)𝐵) , 𝐴) = ((𝐴(-g‘𝑊)𝐵) , 𝐵) ↔ 𝐴 = 𝐵)) |
| 42 | 12, 41 | sylibd 239 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (∀𝑥 ∈ 𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → 𝐴 = 𝐵)) |
| 43 | 2, 42 | impbid2 226 |
1
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ 𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵))) |