Step | Hyp | Ref
| Expression |
1 | | oveq2 7413 |
. . 3
β’ (π΄ = π΅ β (π₯ , π΄) = (π₯ , π΅)) |
2 | 1 | ralrimivw 3150 |
. 2
β’ (π΄ = π΅ β βπ₯ β π (π₯ , π΄) = (π₯ , π΅)) |
3 | | phllmod 21174 |
. . . . 5
β’ (π β PreHil β π β LMod) |
4 | | ip2eq.v |
. . . . . 6
β’ π = (Baseβπ) |
5 | | eqid 2732 |
. . . . . 6
β’
(-gβπ) = (-gβπ) |
6 | 4, 5 | lmodvsubcl 20509 |
. . . . 5
β’ ((π β LMod β§ π΄ β π β§ π΅ β π) β (π΄(-gβπ)π΅) β π) |
7 | 3, 6 | syl3an1 1163 |
. . . 4
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (π΄(-gβπ)π΅) β π) |
8 | | oveq1 7412 |
. . . . . 6
β’ (π₯ = (π΄(-gβπ)π΅) β (π₯ , π΄) = ((π΄(-gβπ)π΅) , π΄)) |
9 | | oveq1 7412 |
. . . . . 6
β’ (π₯ = (π΄(-gβπ)π΅) β (π₯ , π΅) = ((π΄(-gβπ)π΅) , π΅)) |
10 | 8, 9 | eqeq12d 2748 |
. . . . 5
β’ (π₯ = (π΄(-gβπ)π΅) β ((π₯ , π΄) = (π₯ , π΅) β ((π΄(-gβπ)π΅) , π΄) = ((π΄(-gβπ)π΅) , π΅))) |
11 | 10 | rspcv 3608 |
. . . 4
β’ ((π΄(-gβπ)π΅) β π β (βπ₯ β π (π₯ , π΄) = (π₯ , π΅) β ((π΄(-gβπ)π΅) , π΄) = ((π΄(-gβπ)π΅) , π΅))) |
12 | 7, 11 | syl 17 |
. . 3
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (βπ₯ β π (π₯ , π΄) = (π₯ , π΅) β ((π΄(-gβπ)π΅) , π΄) = ((π΄(-gβπ)π΅) , π΅))) |
13 | | simp1 1136 |
. . . . . . 7
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β π β PreHil) |
14 | | simp2 1137 |
. . . . . . 7
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β π΄ β π) |
15 | | simp3 1138 |
. . . . . . 7
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β π΅ β π) |
16 | | eqid 2732 |
. . . . . . . 8
β’
(Scalarβπ) =
(Scalarβπ) |
17 | | ip2eq.h |
. . . . . . . 8
β’ , =
(Β·πβπ) |
18 | | eqid 2732 |
. . . . . . . 8
β’
(-gβ(Scalarβπ)) =
(-gβ(Scalarβπ)) |
19 | 16, 17, 4, 5, 18 | ipsubdi 21187 |
. . . . . . 7
β’ ((π β PreHil β§ ((π΄(-gβπ)π΅) β π β§ π΄ β π β§ π΅ β π)) β ((π΄(-gβπ)π΅) , (π΄(-gβπ)π΅)) = (((π΄(-gβπ)π΅) , π΄)(-gβ(Scalarβπ))((π΄(-gβπ)π΅) , π΅))) |
20 | 13, 7, 14, 15, 19 | syl13anc 1372 |
. . . . . 6
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((π΄(-gβπ)π΅) , (π΄(-gβπ)π΅)) = (((π΄(-gβπ)π΅) , π΄)(-gβ(Scalarβπ))((π΄(-gβπ)π΅) , π΅))) |
21 | 20 | eqeq1d 2734 |
. . . . 5
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (((π΄(-gβπ)π΅) , (π΄(-gβπ)π΅)) =
(0gβ(Scalarβπ)) β (((π΄(-gβπ)π΅) , π΄)(-gβ(Scalarβπ))((π΄(-gβπ)π΅) , π΅)) =
(0gβ(Scalarβπ)))) |
22 | | eqid 2732 |
. . . . . . 7
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
23 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
24 | 16, 17, 4, 22, 23 | ipeq0 21182 |
. . . . . 6
β’ ((π β PreHil β§ (π΄(-gβπ)π΅) β π) β (((π΄(-gβπ)π΅) , (π΄(-gβπ)π΅)) =
(0gβ(Scalarβπ)) β (π΄(-gβπ)π΅) = (0gβπ))) |
25 | 13, 7, 24 | syl2anc 584 |
. . . . 5
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (((π΄(-gβπ)π΅) , (π΄(-gβπ)π΅)) =
(0gβ(Scalarβπ)) β (π΄(-gβπ)π΅) = (0gβπ))) |
26 | 21, 25 | bitr3d 280 |
. . . 4
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((((π΄(-gβπ)π΅) , π΄)(-gβ(Scalarβπ))((π΄(-gβπ)π΅) , π΅)) =
(0gβ(Scalarβπ)) β (π΄(-gβπ)π΅) = (0gβπ))) |
27 | 3 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β π β LMod) |
28 | 16 | lmodfgrp 20472 |
. . . . . 6
β’ (π β LMod β
(Scalarβπ) β
Grp) |
29 | 27, 28 | syl 17 |
. . . . 5
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (Scalarβπ) β Grp) |
30 | | eqid 2732 |
. . . . . . 7
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
31 | 16, 17, 4, 30 | ipcl 21177 |
. . . . . 6
β’ ((π β PreHil β§ (π΄(-gβπ)π΅) β π β§ π΄ β π) β ((π΄(-gβπ)π΅) , π΄) β (Baseβ(Scalarβπ))) |
32 | 13, 7, 14, 31 | syl3anc 1371 |
. . . . 5
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((π΄(-gβπ)π΅) , π΄) β (Baseβ(Scalarβπ))) |
33 | 16, 17, 4, 30 | ipcl 21177 |
. . . . . 6
β’ ((π β PreHil β§ (π΄(-gβπ)π΅) β π β§ π΅ β π) β ((π΄(-gβπ)π΅) , π΅) β (Baseβ(Scalarβπ))) |
34 | 13, 7, 15, 33 | syl3anc 1371 |
. . . . 5
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((π΄(-gβπ)π΅) , π΅) β (Baseβ(Scalarβπ))) |
35 | 30, 22, 18 | grpsubeq0 18905 |
. . . . 5
β’
(((Scalarβπ)
β Grp β§ ((π΄(-gβπ)π΅) , π΄) β (Baseβ(Scalarβπ)) β§ ((π΄(-gβπ)π΅) , π΅) β (Baseβ(Scalarβπ))) β ((((π΄(-gβπ)π΅) , π΄)(-gβ(Scalarβπ))((π΄(-gβπ)π΅) , π΅)) =
(0gβ(Scalarβπ)) β ((π΄(-gβπ)π΅) , π΄) = ((π΄(-gβπ)π΅) , π΅))) |
36 | 29, 32, 34, 35 | syl3anc 1371 |
. . . 4
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((((π΄(-gβπ)π΅) , π΄)(-gβ(Scalarβπ))((π΄(-gβπ)π΅) , π΅)) =
(0gβ(Scalarβπ)) β ((π΄(-gβπ)π΅) , π΄) = ((π΄(-gβπ)π΅) , π΅))) |
37 | | lmodgrp 20470 |
. . . . . 6
β’ (π β LMod β π β Grp) |
38 | 3, 37 | syl 17 |
. . . . 5
β’ (π β PreHil β π β Grp) |
39 | 4, 23, 5 | grpsubeq0 18905 |
. . . . 5
β’ ((π β Grp β§ π΄ β π β§ π΅ β π) β ((π΄(-gβπ)π΅) = (0gβπ) β π΄ = π΅)) |
40 | 38, 39 | syl3an1 1163 |
. . . 4
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β ((π΄(-gβπ)π΅) = (0gβπ) β π΄ = π΅)) |
41 | 26, 36, 40 | 3bitr3d 308 |
. . 3
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (((π΄(-gβπ)π΅) , π΄) = ((π΄(-gβπ)π΅) , π΅) β π΄ = π΅)) |
42 | 12, 41 | sylibd 238 |
. 2
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (βπ₯ β π (π₯ , π΄) = (π₯ , π΅) β π΄ = π΅)) |
43 | 2, 42 | impbid2 225 |
1
β’ ((π β PreHil β§ π΄ β π β§ π΅ β π) β (π΄ = π΅ β βπ₯ β π (π₯ , π΄) = (π₯ , π΅))) |