MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2eq Structured version   Visualization version   GIF version

Theorem ip2eq 20322
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
ip2eq.h , = (·𝑖𝑊)
ip2eq.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
ip2eq ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥, ,   𝑥,𝑉   𝑥,𝑊

Proof of Theorem ip2eq
StepHypRef Expression
1 oveq2 6886 . . 3 (𝐴 = 𝐵 → (𝑥 , 𝐴) = (𝑥 , 𝐵))
21ralrimivw 3148 . 2 (𝐴 = 𝐵 → ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵))
3 phllmod 20299 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
4 ip2eq.v . . . . . 6 𝑉 = (Base‘𝑊)
5 eqid 2799 . . . . . 6 (-g𝑊) = (-g𝑊)
64, 5lmodvsubcl 19226 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) ∈ 𝑉)
73, 6syl3an1 1203 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) ∈ 𝑉)
8 oveq1 6885 . . . . . 6 (𝑥 = (𝐴(-g𝑊)𝐵) → (𝑥 , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐴))
9 oveq1 6885 . . . . . 6 (𝑥 = (𝐴(-g𝑊)𝐵) → (𝑥 , 𝐵) = ((𝐴(-g𝑊)𝐵) , 𝐵))
108, 9eqeq12d 2814 . . . . 5 (𝑥 = (𝐴(-g𝑊)𝐵) → ((𝑥 , 𝐴) = (𝑥 , 𝐵) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
1110rspcv 3493 . . . 4 ((𝐴(-g𝑊)𝐵) ∈ 𝑉 → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
127, 11syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
13 simp1 1167 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ PreHil)
14 simp2 1168 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
15 simp3 1169 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
16 eqid 2799 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
17 ip2eq.h . . . . . . . 8 , = (·𝑖𝑊)
18 eqid 2799 . . . . . . . 8 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
1916, 17, 4, 5, 18ipsubdi 20312 . . . . . . 7 ((𝑊 ∈ PreHil ∧ ((𝐴(-g𝑊)𝐵) ∈ 𝑉𝐴𝑉𝐵𝑉)) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)))
2013, 7, 14, 15, 19syl13anc 1492 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)))
2120eqeq1d 2801 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊))))
22 eqid 2799 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
23 eqid 2799 . . . . . . 7 (0g𝑊) = (0g𝑊)
2416, 17, 4, 22, 23ipeq0 20307 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2513, 7, 24syl2anc 580 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2621, 25bitr3d 273 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2733ad2ant1 1164 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ LMod)
2816lmodfgrp 19190 . . . . . 6 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
2927, 28syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (Scalar‘𝑊) ∈ Grp)
30 eqid 2799 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3116, 17, 4, 30ipcl 20302 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉𝐴𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)))
3213, 7, 14, 31syl3anc 1491 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)))
3316, 17, 4, 30ipcl 20302 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
3413, 7, 15, 33syl3anc 1491 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
3530, 22, 18grpsubeq0 17817 . . . . 5 (((Scalar‘𝑊) ∈ Grp ∧ ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊))) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
3629, 32, 34, 35syl3anc 1491 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
37 lmodgrp 19188 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
383, 37syl 17 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ Grp)
394, 23, 5grpsubeq0 17817 . . . . 5 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) = (0g𝑊) ↔ 𝐴 = 𝐵))
4038, 39syl3an1 1203 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) = (0g𝑊) ↔ 𝐴 = 𝐵))
4126, 36, 403bitr3d 301 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵) ↔ 𝐴 = 𝐵))
4212, 41sylibd 231 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → 𝐴 = 𝐵))
432, 42impbid2 218 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1108   = wceq 1653  wcel 2157  wral 3089  cfv 6101  (class class class)co 6878  Basecbs 16184  Scalarcsca 16270  ·𝑖cip 16272  0gc0g 16415  Grpcgrp 17738  -gcsg 17740  LModclmod 19181  PreHilcphl 20293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-ip 16285  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mhm 17650  df-grp 17741  df-minusg 17742  df-sbg 17743  df-ghm 17971  df-mgp 18806  df-ur 18818  df-ring 18865  df-oppr 18939  df-rnghom 19033  df-staf 19163  df-srng 19164  df-lmod 19183  df-lmhm 19343  df-lvec 19424  df-sra 19495  df-rgmod 19496  df-phl 20295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator