MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2eq Structured version   Visualization version   GIF version

Theorem ip2eq 21569
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
ip2eq.h , = (·𝑖𝑊)
ip2eq.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
ip2eq ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥, ,   𝑥,𝑉   𝑥,𝑊

Proof of Theorem ip2eq
StepHypRef Expression
1 oveq2 7398 . . 3 (𝐴 = 𝐵 → (𝑥 , 𝐴) = (𝑥 , 𝐵))
21ralrimivw 3130 . 2 (𝐴 = 𝐵 → ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵))
3 phllmod 21546 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
4 ip2eq.v . . . . . 6 𝑉 = (Base‘𝑊)
5 eqid 2730 . . . . . 6 (-g𝑊) = (-g𝑊)
64, 5lmodvsubcl 20820 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) ∈ 𝑉)
73, 6syl3an1 1163 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) ∈ 𝑉)
8 oveq1 7397 . . . . . 6 (𝑥 = (𝐴(-g𝑊)𝐵) → (𝑥 , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐴))
9 oveq1 7397 . . . . . 6 (𝑥 = (𝐴(-g𝑊)𝐵) → (𝑥 , 𝐵) = ((𝐴(-g𝑊)𝐵) , 𝐵))
108, 9eqeq12d 2746 . . . . 5 (𝑥 = (𝐴(-g𝑊)𝐵) → ((𝑥 , 𝐴) = (𝑥 , 𝐵) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
1110rspcv 3587 . . . 4 ((𝐴(-g𝑊)𝐵) ∈ 𝑉 → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
127, 11syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
13 simp1 1136 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ PreHil)
14 simp2 1137 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
15 simp3 1138 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
16 eqid 2730 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
17 ip2eq.h . . . . . . . 8 , = (·𝑖𝑊)
18 eqid 2730 . . . . . . . 8 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
1916, 17, 4, 5, 18ipsubdi 21559 . . . . . . 7 ((𝑊 ∈ PreHil ∧ ((𝐴(-g𝑊)𝐵) ∈ 𝑉𝐴𝑉𝐵𝑉)) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)))
2013, 7, 14, 15, 19syl13anc 1374 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)))
2120eqeq1d 2732 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊))))
22 eqid 2730 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
23 eqid 2730 . . . . . . 7 (0g𝑊) = (0g𝑊)
2416, 17, 4, 22, 23ipeq0 21554 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2513, 7, 24syl2anc 584 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2621, 25bitr3d 281 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2733ad2ant1 1133 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ LMod)
2816lmodfgrp 20782 . . . . . 6 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
2927, 28syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (Scalar‘𝑊) ∈ Grp)
30 eqid 2730 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3116, 17, 4, 30ipcl 21549 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉𝐴𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)))
3213, 7, 14, 31syl3anc 1373 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)))
3316, 17, 4, 30ipcl 21549 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
3413, 7, 15, 33syl3anc 1373 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
3530, 22, 18grpsubeq0 18965 . . . . 5 (((Scalar‘𝑊) ∈ Grp ∧ ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊))) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
3629, 32, 34, 35syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
37 lmodgrp 20780 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
383, 37syl 17 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ Grp)
394, 23, 5grpsubeq0 18965 . . . . 5 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) = (0g𝑊) ↔ 𝐴 = 𝐵))
4038, 39syl3an1 1163 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) = (0g𝑊) ↔ 𝐴 = 𝐵))
4126, 36, 403bitr3d 309 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵) ↔ 𝐴 = 𝐵))
4212, 41sylibd 239 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → 𝐴 = 𝐵))
432, 42impbid2 226 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  Basecbs 17186  Scalarcsca 17230  ·𝑖cip 17232  0gc0g 17409  Grpcgrp 18872  -gcsg 18874  LModclmod 20773  PreHilcphl 21540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-ghm 19152  df-mgp 20057  df-ur 20098  df-ring 20151  df-oppr 20253  df-rhm 20388  df-staf 20755  df-srng 20756  df-lmod 20775  df-lmhm 20936  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-phl 21542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator