MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2eq Structured version   Visualization version   GIF version

Theorem ip2eq 21590
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
ip2eq.h , = (·𝑖𝑊)
ip2eq.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
ip2eq ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥, ,   𝑥,𝑉   𝑥,𝑊

Proof of Theorem ip2eq
StepHypRef Expression
1 oveq2 7354 . . 3 (𝐴 = 𝐵 → (𝑥 , 𝐴) = (𝑥 , 𝐵))
21ralrimivw 3128 . 2 (𝐴 = 𝐵 → ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵))
3 phllmod 21567 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
4 ip2eq.v . . . . . 6 𝑉 = (Base‘𝑊)
5 eqid 2731 . . . . . 6 (-g𝑊) = (-g𝑊)
64, 5lmodvsubcl 20840 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) ∈ 𝑉)
73, 6syl3an1 1163 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) ∈ 𝑉)
8 oveq1 7353 . . . . . 6 (𝑥 = (𝐴(-g𝑊)𝐵) → (𝑥 , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐴))
9 oveq1 7353 . . . . . 6 (𝑥 = (𝐴(-g𝑊)𝐵) → (𝑥 , 𝐵) = ((𝐴(-g𝑊)𝐵) , 𝐵))
108, 9eqeq12d 2747 . . . . 5 (𝑥 = (𝐴(-g𝑊)𝐵) → ((𝑥 , 𝐴) = (𝑥 , 𝐵) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
1110rspcv 3568 . . . 4 ((𝐴(-g𝑊)𝐵) ∈ 𝑉 → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
127, 11syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
13 simp1 1136 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ PreHil)
14 simp2 1137 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
15 simp3 1138 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
16 eqid 2731 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
17 ip2eq.h . . . . . . . 8 , = (·𝑖𝑊)
18 eqid 2731 . . . . . . . 8 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
1916, 17, 4, 5, 18ipsubdi 21580 . . . . . . 7 ((𝑊 ∈ PreHil ∧ ((𝐴(-g𝑊)𝐵) ∈ 𝑉𝐴𝑉𝐵𝑉)) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)))
2013, 7, 14, 15, 19syl13anc 1374 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)))
2120eqeq1d 2733 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊))))
22 eqid 2731 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
23 eqid 2731 . . . . . . 7 (0g𝑊) = (0g𝑊)
2416, 17, 4, 22, 23ipeq0 21575 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2513, 7, 24syl2anc 584 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2621, 25bitr3d 281 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2733ad2ant1 1133 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ LMod)
2816lmodfgrp 20802 . . . . . 6 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
2927, 28syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (Scalar‘𝑊) ∈ Grp)
30 eqid 2731 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3116, 17, 4, 30ipcl 21570 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉𝐴𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)))
3213, 7, 14, 31syl3anc 1373 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)))
3316, 17, 4, 30ipcl 21570 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
3413, 7, 15, 33syl3anc 1373 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
3530, 22, 18grpsubeq0 18939 . . . . 5 (((Scalar‘𝑊) ∈ Grp ∧ ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊))) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
3629, 32, 34, 35syl3anc 1373 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
37 lmodgrp 20800 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
383, 37syl 17 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ Grp)
394, 23, 5grpsubeq0 18939 . . . . 5 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) = (0g𝑊) ↔ 𝐴 = 𝐵))
4038, 39syl3an1 1163 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) = (0g𝑊) ↔ 𝐴 = 𝐵))
4126, 36, 403bitr3d 309 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵) ↔ 𝐴 = 𝐵))
4212, 41sylibd 239 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → 𝐴 = 𝐵))
432, 42impbid2 226 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346  Basecbs 17120  Scalarcsca 17164  ·𝑖cip 17166  0gc0g 17343  Grpcgrp 18846  -gcsg 18848  LModclmod 20793  PreHilcphl 21561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-ghm 19125  df-mgp 20059  df-ur 20100  df-ring 20153  df-oppr 20255  df-rhm 20390  df-staf 20754  df-srng 20755  df-lmod 20795  df-lmhm 20956  df-lvec 21037  df-sra 21107  df-rgmod 21108  df-phl 21563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator