MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip2eq Structured version   Visualization version   GIF version

Theorem ip2eq 20770
Description: Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
ip2eq.h , = (·𝑖𝑊)
ip2eq.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
ip2eq ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥, ,   𝑥,𝑉   𝑥,𝑊

Proof of Theorem ip2eq
StepHypRef Expression
1 oveq2 7263 . . 3 (𝐴 = 𝐵 → (𝑥 , 𝐴) = (𝑥 , 𝐵))
21ralrimivw 3108 . 2 (𝐴 = 𝐵 → ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵))
3 phllmod 20747 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
4 ip2eq.v . . . . . 6 𝑉 = (Base‘𝑊)
5 eqid 2738 . . . . . 6 (-g𝑊) = (-g𝑊)
64, 5lmodvsubcl 20083 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) ∈ 𝑉)
73, 6syl3an1 1161 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) ∈ 𝑉)
8 oveq1 7262 . . . . . 6 (𝑥 = (𝐴(-g𝑊)𝐵) → (𝑥 , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐴))
9 oveq1 7262 . . . . . 6 (𝑥 = (𝐴(-g𝑊)𝐵) → (𝑥 , 𝐵) = ((𝐴(-g𝑊)𝐵) , 𝐵))
108, 9eqeq12d 2754 . . . . 5 (𝑥 = (𝐴(-g𝑊)𝐵) → ((𝑥 , 𝐴) = (𝑥 , 𝐵) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
1110rspcv 3547 . . . 4 ((𝐴(-g𝑊)𝐵) ∈ 𝑉 → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
127, 11syl 17 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
13 simp1 1134 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ PreHil)
14 simp2 1135 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
15 simp3 1136 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
16 eqid 2738 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
17 ip2eq.h . . . . . . . 8 , = (·𝑖𝑊)
18 eqid 2738 . . . . . . . 8 (-g‘(Scalar‘𝑊)) = (-g‘(Scalar‘𝑊))
1916, 17, 4, 5, 18ipsubdi 20760 . . . . . . 7 ((𝑊 ∈ PreHil ∧ ((𝐴(-g𝑊)𝐵) ∈ 𝑉𝐴𝑉𝐵𝑉)) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)))
2013, 7, 14, 15, 19syl13anc 1370 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)))
2120eqeq1d 2740 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊))))
22 eqid 2738 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
23 eqid 2738 . . . . . . 7 (0g𝑊) = (0g𝑊)
2416, 17, 4, 22, 23ipeq0 20755 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2513, 7, 24syl2anc 583 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2621, 25bitr3d 280 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ (𝐴(-g𝑊)𝐵) = (0g𝑊)))
2733ad2ant1 1131 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ LMod)
2816lmodfgrp 20047 . . . . . 6 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Grp)
2927, 28syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (Scalar‘𝑊) ∈ Grp)
30 eqid 2738 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3116, 17, 4, 30ipcl 20750 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉𝐴𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)))
3213, 7, 14, 31syl3anc 1369 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)))
3316, 17, 4, 30ipcl 20750 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
3413, 7, 15, 33syl3anc 1369 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊)))
3530, 22, 18grpsubeq0 18576 . . . . 5 (((Scalar‘𝑊) ∈ Grp ∧ ((𝐴(-g𝑊)𝐵) , 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝐴(-g𝑊)𝐵) , 𝐵) ∈ (Base‘(Scalar‘𝑊))) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
3629, 32, 34, 35syl3anc 1369 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((((𝐴(-g𝑊)𝐵) , 𝐴)(-g‘(Scalar‘𝑊))((𝐴(-g𝑊)𝐵) , 𝐵)) = (0g‘(Scalar‘𝑊)) ↔ ((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵)))
37 lmodgrp 20045 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
383, 37syl 17 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ Grp)
394, 23, 5grpsubeq0 18576 . . . . 5 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) = (0g𝑊) ↔ 𝐴 = 𝐵))
4038, 39syl3an1 1161 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → ((𝐴(-g𝑊)𝐵) = (0g𝑊) ↔ 𝐴 = 𝐵))
4126, 36, 403bitr3d 308 . . 3 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (((𝐴(-g𝑊)𝐵) , 𝐴) = ((𝐴(-g𝑊)𝐵) , 𝐵) ↔ 𝐴 = 𝐵))
4212, 41sylibd 238 . 2 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵) → 𝐴 = 𝐵))
432, 42impbid2 225 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 = 𝐵 ↔ ∀𝑥𝑉 (𝑥 , 𝐴) = (𝑥 , 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891  ·𝑖cip 16893  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  LModclmod 20038  PreHilcphl 20741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-ghm 18747  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-rnghom 19874  df-staf 20020  df-srng 20021  df-lmod 20040  df-lmhm 20199  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-phl 20743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator