MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipsubdir Structured version   Visualization version   GIF version

Theorem ipsubdir 20953
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
Assertion
Ref Expression
ipsubdir ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)))

Proof of Theorem ipsubdir
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
2 phllmod 20941 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
32adantr 481 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
4 lmodgrp 20236 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
53, 4syl 17 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ Grp)
6 simpr1 1193 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
7 simpr2 1194 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
8 phllmhm.v . . . . . . 7 𝑉 = (Base‘𝑊)
9 ipsubdir.m . . . . . . 7 = (-g𝑊)
108, 9grpsubcl 18751 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) ∈ 𝑉)
115, 6, 7, 10syl3anc 1370 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 𝐵) ∈ 𝑉)
12 simpr3 1195 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
13 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 eqid 2736 . . . . . 6 (+g𝑊) = (+g𝑊)
16 eqid 2736 . . . . . 6 (+g𝐹) = (+g𝐹)
1713, 14, 8, 15, 16ipdir 20950 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝐴 𝐵) ∈ 𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵)(+g𝑊)𝐵) , 𝐶) = (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)))
181, 11, 7, 12, 17syl13anc 1371 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵)(+g𝑊)𝐵) , 𝐶) = (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)))
198, 15, 9grpnpcan 18763 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵)(+g𝑊)𝐵) = 𝐴)
205, 6, 7, 19syl3anc 1370 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵)(+g𝑊)𝐵) = 𝐴)
2120oveq1d 7352 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵)(+g𝑊)𝐵) , 𝐶) = (𝐴 , 𝐶))
2218, 21eqtr3d 2778 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶))
2313lmodfgrp 20238 . . . . 5 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
243, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐹 ∈ Grp)
25 eqid 2736 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
2613, 14, 8, 25ipcl 20944 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
271, 6, 12, 26syl3anc 1370 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
2813, 14, 8, 25ipcl 20944 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
291, 7, 12, 28syl3anc 1370 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
3013, 14, 8, 25ipcl 20944 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴 𝐵) ∈ 𝑉𝐶𝑉) → ((𝐴 𝐵) , 𝐶) ∈ (Base‘𝐹))
311, 11, 12, 30syl3anc 1370 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) ∈ (Base‘𝐹))
32 ipsubdir.s . . . . 5 𝑆 = (-g𝐹)
3325, 16, 32grpsubadd 18759 . . . 4 ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ ((𝐴 𝐵) , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 𝐵) , 𝐶) ↔ (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶)))
3424, 27, 29, 31, 33syl13anc 1371 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 𝐵) , 𝐶) ↔ (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶)))
3522, 34mpbird 256 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 𝐵) , 𝐶))
3635eqcomd 2742 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  cfv 6479  (class class class)co 7337  Basecbs 17009  +gcplusg 17059  Scalarcsca 17062  ·𝑖cip 17064  Grpcgrp 18673  -gcsg 18675  LModclmod 20229  PreHilcphl 20935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-plusg 17072  df-sca 17075  df-vsca 17076  df-ip 17077  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-grp 18676  df-minusg 18677  df-sbg 18678  df-ghm 18928  df-ring 19880  df-lmod 20231  df-lmhm 20390  df-lvec 20471  df-sra 20540  df-rgmod 20541  df-phl 20937
This theorem is referenced by:  ip2subdi  20955  cphsubdir  24478
  Copyright terms: Public domain W3C validator