Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipsubdir Structured version   Visualization version   GIF version

Theorem ipsubdir 20336
 Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
Assertion
Ref Expression
ipsubdir ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)))

Proof of Theorem ipsubdir
StepHypRef Expression
1 simpl 486 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
2 phllmod 20324 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
32adantr 484 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
4 lmodgrp 19638 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
53, 4syl 17 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ Grp)
6 simpr1 1191 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
7 simpr2 1192 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
8 phllmhm.v . . . . . . 7 𝑉 = (Base‘𝑊)
9 ipsubdir.m . . . . . . 7 = (-g𝑊)
108, 9grpsubcl 18175 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) ∈ 𝑉)
115, 6, 7, 10syl3anc 1368 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 𝐵) ∈ 𝑉)
12 simpr3 1193 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
13 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 eqid 2798 . . . . . 6 (+g𝑊) = (+g𝑊)
16 eqid 2798 . . . . . 6 (+g𝐹) = (+g𝐹)
1713, 14, 8, 15, 16ipdir 20333 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝐴 𝐵) ∈ 𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵)(+g𝑊)𝐵) , 𝐶) = (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)))
181, 11, 7, 12, 17syl13anc 1369 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵)(+g𝑊)𝐵) , 𝐶) = (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)))
198, 15, 9grpnpcan 18187 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵)(+g𝑊)𝐵) = 𝐴)
205, 6, 7, 19syl3anc 1368 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵)(+g𝑊)𝐵) = 𝐴)
2120oveq1d 7151 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵)(+g𝑊)𝐵) , 𝐶) = (𝐴 , 𝐶))
2218, 21eqtr3d 2835 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶))
2313lmodfgrp 19640 . . . . 5 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
243, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐹 ∈ Grp)
25 eqid 2798 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
2613, 14, 8, 25ipcl 20327 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
271, 6, 12, 26syl3anc 1368 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
2813, 14, 8, 25ipcl 20327 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
291, 7, 12, 28syl3anc 1368 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
3013, 14, 8, 25ipcl 20327 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴 𝐵) ∈ 𝑉𝐶𝑉) → ((𝐴 𝐵) , 𝐶) ∈ (Base‘𝐹))
311, 11, 12, 30syl3anc 1368 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) ∈ (Base‘𝐹))
32 ipsubdir.s . . . . 5 𝑆 = (-g𝐹)
3325, 16, 32grpsubadd 18183 . . . 4 ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ ((𝐴 𝐵) , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 𝐵) , 𝐶) ↔ (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶)))
3424, 27, 29, 31, 33syl13anc 1369 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 𝐵) , 𝐶) ↔ (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶)))
3522, 34mpbird 260 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 𝐵) , 𝐶))
3635eqcomd 2804 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ‘cfv 6325  (class class class)co 7136  Basecbs 16478  +gcplusg 16560  Scalarcsca 16563  ·𝑖cip 16565  Grpcgrp 18098  -gcsg 18100  LModclmod 19631  PreHilcphl 20318 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-plusg 16573  df-sca 16576  df-vsca 16577  df-ip 16578  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-ghm 18352  df-ring 19296  df-lmod 19633  df-lmhm 19791  df-lvec 19872  df-sra 19941  df-rgmod 19942  df-phl 20320 This theorem is referenced by:  ip2subdi  20338  cphsubdir  23823
 Copyright terms: Public domain W3C validator