| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipsubdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipsubdir.m | ⊢ − = (-g‘𝑊) |
| ipsubdir.s | ⊢ 𝑆 = (-g‘𝐹) |
| Ref | Expression |
|---|---|
| ipsubdir | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) | |
| 2 | phllmod 21537 | . . . . . . . 8 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 4 | lmodgrp 20770 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ Grp) |
| 6 | simpr1 1195 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
| 7 | simpr2 1196 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
| 8 | phllmhm.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | ipsubdir.m | . . . . . . 7 ⊢ − = (-g‘𝑊) | |
| 10 | 8, 9 | grpsubcl 18899 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) ∈ 𝑉) |
| 11 | 5, 6, 7, 10 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 − 𝐵) ∈ 𝑉) |
| 12 | simpr3 1197 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 13 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 14 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 15 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 16 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 17 | 13, 14, 8, 15, 16 | ipdir 21546 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ ((𝐴 − 𝐵) ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵)(+g‘𝑊)𝐵) , 𝐶) = (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶))) |
| 18 | 1, 11, 7, 12, 17 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵)(+g‘𝑊)𝐵) , 𝐶) = (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶))) |
| 19 | 8, 15, 9 | grpnpcan 18911 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵)(+g‘𝑊)𝐵) = 𝐴) |
| 20 | 5, 6, 7, 19 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵)(+g‘𝑊)𝐵) = 𝐴) |
| 21 | 20 | oveq1d 7364 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵)(+g‘𝑊)𝐵) , 𝐶) = (𝐴 , 𝐶)) |
| 22 | 18, 21 | eqtr3d 2766 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶)) |
| 23 | 13 | lmodfgrp 20772 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 24 | 3, 23 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹 ∈ Grp) |
| 25 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 26 | 13, 14, 8, 25 | ipcl 21540 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 27 | 1, 6, 12, 26 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 28 | 13, 14, 8, 25 | ipcl 21540 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
| 29 | 1, 7, 12, 28 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
| 30 | 13, 14, 8, 25 | ipcl 21540 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 − 𝐵) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐴 − 𝐵) , 𝐶) ∈ (Base‘𝐹)) |
| 31 | 1, 11, 12, 30 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) ∈ (Base‘𝐹)) |
| 32 | ipsubdir.s | . . . . 5 ⊢ 𝑆 = (-g‘𝐹) | |
| 33 | 25, 16, 32 | grpsubadd 18907 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ ((𝐴 − 𝐵) , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 − 𝐵) , 𝐶) ↔ (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶))) |
| 34 | 24, 27, 29, 31, 33 | syl13anc 1374 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 − 𝐵) , 𝐶) ↔ (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶))) |
| 35 | 22, 34 | mpbird 257 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 − 𝐵) , 𝐶)) |
| 36 | 35 | eqcomd 2735 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑖cip 17166 Grpcgrp 18812 -gcsg 18814 LModclmod 20763 PreHilcphl 21531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-ghm 19092 df-ring 20120 df-lmod 20765 df-lmhm 20926 df-lvec 21007 df-sra 21077 df-rgmod 21078 df-phl 21533 |
| This theorem is referenced by: ip2subdi 21551 cphsubdir 25106 |
| Copyright terms: Public domain | W3C validator |