MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipsubdir Structured version   Visualization version   GIF version

Theorem ipsubdir 20714
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipsubdir.m = (-g𝑊)
ipsubdir.s 𝑆 = (-g𝐹)
Assertion
Ref Expression
ipsubdir ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)))

Proof of Theorem ipsubdir
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ PreHil)
2 phllmod 20702 . . . . . . . 8 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
32adantr 481 . . . . . . 7 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
4 lmodgrp 19570 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
53, 4syl 17 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝑊 ∈ Grp)
6 simpr1 1186 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
7 simpr2 1187 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
8 phllmhm.v . . . . . . 7 𝑉 = (Base‘𝑊)
9 ipsubdir.m . . . . . . 7 = (-g𝑊)
108, 9grpsubcl 18117 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) ∈ 𝑉)
115, 6, 7, 10syl3anc 1363 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 𝐵) ∈ 𝑉)
12 simpr3 1188 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
13 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
14 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
15 eqid 2818 . . . . . 6 (+g𝑊) = (+g𝑊)
16 eqid 2818 . . . . . 6 (+g𝐹) = (+g𝐹)
1713, 14, 8, 15, 16ipdir 20711 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝐴 𝐵) ∈ 𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵)(+g𝑊)𝐵) , 𝐶) = (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)))
181, 11, 7, 12, 17syl13anc 1364 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵)(+g𝑊)𝐵) , 𝐶) = (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)))
198, 15, 9grpnpcan 18129 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵)(+g𝑊)𝐵) = 𝐴)
205, 6, 7, 19syl3anc 1363 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵)(+g𝑊)𝐵) = 𝐴)
2120oveq1d 7160 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵)(+g𝑊)𝐵) , 𝐶) = (𝐴 , 𝐶))
2218, 21eqtr3d 2855 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶))
2313lmodfgrp 19572 . . . . 5 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
243, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐹 ∈ Grp)
25 eqid 2818 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
2613, 14, 8, 25ipcl 20705 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐶𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
271, 6, 12, 26syl3anc 1363 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹))
2813, 14, 8, 25ipcl 20705 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
291, 7, 12, 28syl3anc 1363 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐶) ∈ (Base‘𝐹))
3013, 14, 8, 25ipcl 20705 . . . . 5 ((𝑊 ∈ PreHil ∧ (𝐴 𝐵) ∈ 𝑉𝐶𝑉) → ((𝐴 𝐵) , 𝐶) ∈ (Base‘𝐹))
311, 11, 12, 30syl3anc 1363 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) ∈ (Base‘𝐹))
32 ipsubdir.s . . . . 5 𝑆 = (-g𝐹)
3325, 16, 32grpsubadd 18125 . . . 4 ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ ((𝐴 𝐵) , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 𝐵) , 𝐶) ↔ (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶)))
3424, 27, 29, 31, 33syl13anc 1364 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 𝐵) , 𝐶) ↔ (((𝐴 𝐵) , 𝐶)(+g𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶)))
3522, 34mpbird 258 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 𝐵) , 𝐶))
3635eqcomd 2824 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  Scalarcsca 16556  ·𝑖cip 16558  Grpcgrp 18041  -gcsg 18043  LModclmod 19563  PreHilcphl 20696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-sca 16569  df-vsca 16570  df-ip 16571  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-ghm 18294  df-ring 19228  df-lmod 19565  df-lmhm 19723  df-lvec 19804  df-sra 19873  df-rgmod 19874  df-phl 20698
This theorem is referenced by:  ip2subdi  20716  cphsubdir  23739
  Copyright terms: Public domain W3C validator