Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipsubdir | Structured version Visualization version GIF version |
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipsubdir.m | ⊢ − = (-g‘𝑊) |
ipsubdir.s | ⊢ 𝑆 = (-g‘𝐹) |
Ref | Expression |
---|---|
ipsubdir | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) | |
2 | phllmod 20592 | . . . . . . . 8 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
3 | 2 | adantr 484 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
4 | lmodgrp 19906 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ Grp) |
6 | simpr1 1196 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
7 | simpr2 1197 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
8 | phllmhm.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
9 | ipsubdir.m | . . . . . . 7 ⊢ − = (-g‘𝑊) | |
10 | 8, 9 | grpsubcl 18443 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) ∈ 𝑉) |
11 | 5, 6, 7, 10 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 − 𝐵) ∈ 𝑉) |
12 | simpr3 1198 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
13 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
14 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
15 | eqid 2737 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
16 | eqid 2737 | . . . . . 6 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
17 | 13, 14, 8, 15, 16 | ipdir 20601 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ ((𝐴 − 𝐵) ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵)(+g‘𝑊)𝐵) , 𝐶) = (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶))) |
18 | 1, 11, 7, 12, 17 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵)(+g‘𝑊)𝐵) , 𝐶) = (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶))) |
19 | 8, 15, 9 | grpnpcan 18455 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵)(+g‘𝑊)𝐵) = 𝐴) |
20 | 5, 6, 7, 19 | syl3anc 1373 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵)(+g‘𝑊)𝐵) = 𝐴) |
21 | 20 | oveq1d 7228 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵)(+g‘𝑊)𝐵) , 𝐶) = (𝐴 , 𝐶)) |
22 | 18, 21 | eqtr3d 2779 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶)) |
23 | 13 | lmodfgrp 19908 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
24 | 3, 23 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹 ∈ Grp) |
25 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
26 | 13, 14, 8, 25 | ipcl 20595 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
27 | 1, 6, 12, 26 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
28 | 13, 14, 8, 25 | ipcl 20595 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
29 | 1, 7, 12, 28 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
30 | 13, 14, 8, 25 | ipcl 20595 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 − 𝐵) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐴 − 𝐵) , 𝐶) ∈ (Base‘𝐹)) |
31 | 1, 11, 12, 30 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) ∈ (Base‘𝐹)) |
32 | ipsubdir.s | . . . . 5 ⊢ 𝑆 = (-g‘𝐹) | |
33 | 25, 16, 32 | grpsubadd 18451 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ ((𝐴 − 𝐵) , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 − 𝐵) , 𝐶) ↔ (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶))) |
34 | 24, 27, 29, 31, 33 | syl13anc 1374 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 − 𝐵) , 𝐶) ↔ (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶))) |
35 | 22, 34 | mpbird 260 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 − 𝐵) , 𝐶)) |
36 | 35 | eqcomd 2743 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 Scalarcsca 16805 ·𝑖cip 16807 Grpcgrp 18365 -gcsg 18367 LModclmod 19899 PreHilcphl 20586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-sca 16818 df-vsca 16819 df-ip 16820 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-ghm 18620 df-ring 19564 df-lmod 19901 df-lmhm 20059 df-lvec 20140 df-sra 20209 df-rgmod 20210 df-phl 20588 |
This theorem is referenced by: ip2subdi 20606 cphsubdir 24105 |
Copyright terms: Public domain | W3C validator |