MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1val Structured version   Visualization version   GIF version

Theorem pj1val 19625
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1fval.v 𝐵 = (Base‘𝐺)
pj1fval.a + = (+g𝐺)
pj1fval.s = (LSSum‘𝐺)
pj1fval.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1val (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥, ,𝑦   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)   + (𝑥,𝑦)

Proof of Theorem pj1val
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pj1fval.v . . . 4 𝐵 = (Base‘𝐺)
2 pj1fval.a . . . 4 + = (+g𝐺)
3 pj1fval.s . . . 4 = (LSSum‘𝐺)
4 pj1fval.p . . . 4 𝑃 = (proj1𝐺)
51, 2, 3, 4pj1fval 19624 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
65adantr 480 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
7 simpr 484 . . . . 5 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → 𝑧 = 𝑋)
87eqeq1d 2731 . . . 4 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → (𝑧 = (𝑥 + 𝑦) ↔ 𝑋 = (𝑥 + 𝑦)))
98rexbidv 3157 . . 3 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → (∃𝑦𝑈 𝑧 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
109riotabidv 7346 . 2 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
11 simpr 484 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → 𝑋 ∈ (𝑇 𝑈))
12 riotaex 7348 . . 3 (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ V
1312a1i 11 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ V)
146, 10, 11, 13fvmptd 6975 1 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  wss 3914  cmpt 5188  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  LSSumclsm 19564  proj1cpj1 19565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-pj1 19567
This theorem is referenced by:  pj1id  19629
  Copyright terms: Public domain W3C validator