MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1val Structured version   Visualization version   GIF version

Theorem pj1val 19689
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1fval.v 𝐵 = (Base‘𝐺)
pj1fval.a + = (+g𝐺)
pj1fval.s = (LSSum‘𝐺)
pj1fval.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1val (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥, ,𝑦   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)   + (𝑥,𝑦)

Proof of Theorem pj1val
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pj1fval.v . . . 4 𝐵 = (Base‘𝐺)
2 pj1fval.a . . . 4 + = (+g𝐺)
3 pj1fval.s . . . 4 = (LSSum‘𝐺)
4 pj1fval.p . . . 4 𝑃 = (proj1𝐺)
51, 2, 3, 4pj1fval 19688 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
65adantr 479 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
7 simpr 483 . . . . 5 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → 𝑧 = 𝑋)
87eqeq1d 2728 . . . 4 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → (𝑧 = (𝑥 + 𝑦) ↔ 𝑋 = (𝑥 + 𝑦)))
98rexbidv 3169 . . 3 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → (∃𝑦𝑈 𝑧 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
109riotabidv 7374 . 2 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
11 simpr 483 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → 𝑋 ∈ (𝑇 𝑈))
12 riotaex 7376 . . 3 (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ V
1312a1i 11 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ V)
146, 10, 11, 13fvmptd 7008 1 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wrex 3060  Vcvv 3462  wss 3946  cmpt 5228  cfv 6546  crio 7371  (class class class)co 7416  Basecbs 17208  +gcplusg 17261  LSSumclsm 19628  proj1cpj1 19629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-pj1 19631
This theorem is referenced by:  pj1id  19693
  Copyright terms: Public domain W3C validator