MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1val Structured version   Visualization version   GIF version

Theorem pj1val 19611
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1fval.v 𝐵 = (Base‘𝐺)
pj1fval.a + = (+g𝐺)
pj1fval.s = (LSSum‘𝐺)
pj1fval.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1val (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥, ,𝑦   𝑥,𝐺,𝑦   𝑥,𝑉,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)   + (𝑥,𝑦)

Proof of Theorem pj1val
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pj1fval.v . . . 4 𝐵 = (Base‘𝐺)
2 pj1fval.a . . . 4 + = (+g𝐺)
3 pj1fval.s . . . 4 = (LSSum‘𝐺)
4 pj1fval.p . . . 4 𝑃 = (proj1𝐺)
51, 2, 3, 4pj1fval 19610 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
65adantr 480 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → (𝑇𝑃𝑈) = (𝑧 ∈ (𝑇 𝑈) ↦ (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦))))
7 simpr 484 . . . . 5 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → 𝑧 = 𝑋)
87eqeq1d 2735 . . . 4 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → (𝑧 = (𝑥 + 𝑦) ↔ 𝑋 = (𝑥 + 𝑦)))
98rexbidv 3157 . . 3 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → (∃𝑦𝑈 𝑧 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
109riotabidv 7313 . 2 ((((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) ∧ 𝑧 = 𝑋) → (𝑥𝑇𝑦𝑈 𝑧 = (𝑥 + 𝑦)) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
11 simpr 484 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → 𝑋 ∈ (𝑇 𝑈))
12 riotaex 7315 . . 3 (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ V
1312a1i 11 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ V)
146, 10, 11, 13fvmptd 6944 1 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  wss 3898  cmpt 5176  cfv 6488  crio 7310  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  LSSumclsm 19550  proj1cpj1 19551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-pj1 19553
This theorem is referenced by:  pj1id  19615
  Copyright terms: Public domain W3C validator