MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1eu Structured version   Visualization version   GIF version

Theorem pj1eu 19714
Description: Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
Assertion
Ref Expression
pj1eu ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦, +   𝑥, ,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem pj1eu
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 pj1eu.a . . . . 5 + = (+g𝐺)
4 pj1eu.s . . . . 5 = (LSSum‘𝐺)
53, 4lsmelval 19667 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
76biimpa 476 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
8 reeanv 3229 . . . . 5 (∃𝑦𝑈𝑣𝑈 (𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) ↔ (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)))
9 eqtr2 2761 . . . . . . 7 ((𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → (𝑥 + 𝑦) = (𝑢 + 𝑣))
10 pj1eu.o . . . . . . . . 9 0 = (0g𝐺)
11 pj1eu.z . . . . . . . . 9 𝑍 = (Cntz‘𝐺)
121ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
132ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
14 pj1eu.4 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) = { 0 })
1514ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → (𝑇𝑈) = { 0 })
16 pj1eu.5 . . . . . . . . . 10 (𝜑𝑇 ⊆ (𝑍𝑈))
1716ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑇 ⊆ (𝑍𝑈))
18 simplrl 777 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑥𝑇)
19 simplrr 778 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑢𝑇)
20 simprl 771 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑦𝑈)
21 simprr 773 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑣𝑈)
223, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21subgdisjb 19711 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑥 + 𝑦) = (𝑢 + 𝑣) ↔ (𝑥 = 𝑢𝑦 = 𝑣)))
23 simpl 482 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
2422, 23biimtrdi 253 . . . . . . 7 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑥 + 𝑦) = (𝑢 + 𝑣) → 𝑥 = 𝑢))
259, 24syl5 34 . . . . . 6 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2625rexlimdvva 3213 . . . . 5 ((𝜑 ∧ (𝑥𝑇𝑢𝑇)) → (∃𝑦𝑈𝑣𝑈 (𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
278, 26biimtrrid 243 . . . 4 ((𝜑 ∧ (𝑥𝑇𝑢𝑇)) → ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2827ralrimivva 3202 . . 3 (𝜑 → ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2928adantr 480 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
30 oveq1 7438 . . . . . 6 (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦))
3130eqeq2d 2748 . . . . 5 (𝑥 = 𝑢 → (𝑋 = (𝑥 + 𝑦) ↔ 𝑋 = (𝑢 + 𝑦)))
3231rexbidv 3179 . . . 4 (𝑥 = 𝑢 → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (𝑢 + 𝑦)))
33 oveq2 7439 . . . . . 6 (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣))
3433eqeq2d 2748 . . . . 5 (𝑦 = 𝑣 → (𝑋 = (𝑢 + 𝑦) ↔ 𝑋 = (𝑢 + 𝑣)))
3534cbvrexvw 3238 . . . 4 (∃𝑦𝑈 𝑋 = (𝑢 + 𝑦) ↔ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣))
3632, 35bitrdi 287 . . 3 (𝑥 = 𝑢 → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)))
3736reu4 3737 . 2 (∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ (∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢)))
387, 29, 37sylanbrc 583 1 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  ∃!wreu 3378  cin 3950  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  +gcplusg 17297  0gc0g 17484  SubGrpcsubg 19138  Cntzccntz 19333  LSSumclsm 19652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654
This theorem is referenced by:  pj1f  19715  pj1id  19717
  Copyright terms: Public domain W3C validator