MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1eu Structured version   Visualization version   GIF version

Theorem pj1eu 19729
Description: Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
Assertion
Ref Expression
pj1eu ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦, +   𝑥, ,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem pj1eu
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 pj1eu.a . . . . 5 + = (+g𝐺)
4 pj1eu.s . . . . 5 = (LSSum‘𝐺)
53, 4lsmelval 19682 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
76biimpa 476 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
8 reeanv 3227 . . . . 5 (∃𝑦𝑈𝑣𝑈 (𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) ↔ (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)))
9 eqtr2 2759 . . . . . . 7 ((𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → (𝑥 + 𝑦) = (𝑢 + 𝑣))
10 pj1eu.o . . . . . . . . 9 0 = (0g𝐺)
11 pj1eu.z . . . . . . . . 9 𝑍 = (Cntz‘𝐺)
121ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
132ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
14 pj1eu.4 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) = { 0 })
1514ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → (𝑇𝑈) = { 0 })
16 pj1eu.5 . . . . . . . . . 10 (𝜑𝑇 ⊆ (𝑍𝑈))
1716ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑇 ⊆ (𝑍𝑈))
18 simplrl 777 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑥𝑇)
19 simplrr 778 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑢𝑇)
20 simprl 771 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑦𝑈)
21 simprr 773 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑣𝑈)
223, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21subgdisjb 19726 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑥 + 𝑦) = (𝑢 + 𝑣) ↔ (𝑥 = 𝑢𝑦 = 𝑣)))
23 simpl 482 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
2422, 23biimtrdi 253 . . . . . . 7 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑥 + 𝑦) = (𝑢 + 𝑣) → 𝑥 = 𝑢))
259, 24syl5 34 . . . . . 6 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2625rexlimdvva 3211 . . . . 5 ((𝜑 ∧ (𝑥𝑇𝑢𝑇)) → (∃𝑦𝑈𝑣𝑈 (𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
278, 26biimtrrid 243 . . . 4 ((𝜑 ∧ (𝑥𝑇𝑢𝑇)) → ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2827ralrimivva 3200 . . 3 (𝜑 → ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2928adantr 480 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
30 oveq1 7438 . . . . . 6 (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦))
3130eqeq2d 2746 . . . . 5 (𝑥 = 𝑢 → (𝑋 = (𝑥 + 𝑦) ↔ 𝑋 = (𝑢 + 𝑦)))
3231rexbidv 3177 . . . 4 (𝑥 = 𝑢 → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (𝑢 + 𝑦)))
33 oveq2 7439 . . . . . 6 (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣))
3433eqeq2d 2746 . . . . 5 (𝑦 = 𝑣 → (𝑋 = (𝑢 + 𝑦) ↔ 𝑋 = (𝑢 + 𝑣)))
3534cbvrexvw 3236 . . . 4 (∃𝑦𝑈 𝑋 = (𝑢 + 𝑦) ↔ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣))
3632, 35bitrdi 287 . . 3 (𝑥 = 𝑢 → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)))
3736reu4 3740 . 2 (∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ (∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢)))
387, 29, 37sylanbrc 583 1 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  ∃!wreu 3376  cin 3962  wss 3963  {csn 4631  cfv 6563  (class class class)co 7431  +gcplusg 17298  0gc0g 17486  SubGrpcsubg 19151  Cntzccntz 19346  LSSumclsm 19667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-lsm 19669
This theorem is referenced by:  pj1f  19730  pj1id  19732
  Copyright terms: Public domain W3C validator