MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1eu Structured version   Visualization version   GIF version

Theorem pj1eu 18801
Description: Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
Assertion
Ref Expression
pj1eu ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦, +   𝑥, ,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem pj1eu
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 pj1eu.a . . . . 5 + = (+g𝐺)
4 pj1eu.s . . . . 5 = (LSSum‘𝐺)
53, 4lsmelval 18753 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
61, 2, 5syl2anc 587 . . 3 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
76biimpa 480 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
8 reeanv 3352 . . . . 5 (∃𝑦𝑈𝑣𝑈 (𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) ↔ (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)))
9 eqtr2 2842 . . . . . . 7 ((𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → (𝑥 + 𝑦) = (𝑢 + 𝑣))
10 pj1eu.o . . . . . . . . 9 0 = (0g𝐺)
11 pj1eu.z . . . . . . . . 9 𝑍 = (Cntz‘𝐺)
121ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
132ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
14 pj1eu.4 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) = { 0 })
1514ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → (𝑇𝑈) = { 0 })
16 pj1eu.5 . . . . . . . . . 10 (𝜑𝑇 ⊆ (𝑍𝑈))
1716ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑇 ⊆ (𝑍𝑈))
18 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑥𝑇)
19 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑢𝑇)
20 simprl 770 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑦𝑈)
21 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑣𝑈)
223, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21subgdisjb 18798 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑥 + 𝑦) = (𝑢 + 𝑣) ↔ (𝑥 = 𝑢𝑦 = 𝑣)))
23 simpl 486 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
2422, 23syl6bi 256 . . . . . . 7 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑥 + 𝑦) = (𝑢 + 𝑣) → 𝑥 = 𝑢))
259, 24syl5 34 . . . . . 6 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2625rexlimdvva 3280 . . . . 5 ((𝜑 ∧ (𝑥𝑇𝑢𝑇)) → (∃𝑦𝑈𝑣𝑈 (𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
278, 26syl5bir 246 . . . 4 ((𝜑 ∧ (𝑥𝑇𝑢𝑇)) → ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2827ralrimivva 3179 . . 3 (𝜑 → ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2928adantr 484 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
30 oveq1 7137 . . . . . 6 (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦))
3130eqeq2d 2832 . . . . 5 (𝑥 = 𝑢 → (𝑋 = (𝑥 + 𝑦) ↔ 𝑋 = (𝑢 + 𝑦)))
3231rexbidv 3283 . . . 4 (𝑥 = 𝑢 → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (𝑢 + 𝑦)))
33 oveq2 7138 . . . . . 6 (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣))
3433eqeq2d 2832 . . . . 5 (𝑦 = 𝑣 → (𝑋 = (𝑢 + 𝑦) ↔ 𝑋 = (𝑢 + 𝑣)))
3534cbvrexvw 3427 . . . 4 (∃𝑦𝑈 𝑋 = (𝑢 + 𝑦) ↔ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣))
3632, 35syl6bb 290 . . 3 (𝑥 = 𝑢 → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)))
3736reu4 3699 . 2 (∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ (∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢)))
387, 29, 37sylanbrc 586 1 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3126  wrex 3127  ∃!wreu 3128  cin 3909  wss 3910  {csn 4540  cfv 6328  (class class class)co 7130  +gcplusg 16544  0gc0g 16692  SubGrpcsubg 18252  Cntzccntz 18424  LSSumclsm 18738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-sbg 18087  df-subg 18255  df-cntz 18426  df-lsm 18740
This theorem is referenced by:  pj1f  18802  pj1id  18804
  Copyright terms: Public domain W3C validator