MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1eu Structured version   Visualization version   GIF version

Theorem pj1eu 18467
Description: Uniqueness of a left projection. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
Assertion
Ref Expression
pj1eu ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
Distinct variable groups:   𝑥,𝑦, +   𝑥, ,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem pj1eu
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
3 pj1eu.a . . . . 5 + = (+g𝐺)
4 pj1eu.s . . . . 5 = (LSSum‘𝐺)
53, 4lsmelval 18422 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
61, 2, 5syl2anc 579 . . 3 (𝜑 → (𝑋 ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
76biimpa 470 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
8 reeanv 3317 . . . . 5 (∃𝑦𝑈𝑣𝑈 (𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) ↔ (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)))
9 eqtr2 2847 . . . . . . 7 ((𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → (𝑥 + 𝑦) = (𝑢 + 𝑣))
10 pj1eu.o . . . . . . . . 9 0 = (0g𝐺)
11 pj1eu.z . . . . . . . . 9 𝑍 = (Cntz‘𝐺)
121ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑇 ∈ (SubGrp‘𝐺))
132ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
14 pj1eu.4 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) = { 0 })
1514ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → (𝑇𝑈) = { 0 })
16 pj1eu.5 . . . . . . . . . 10 (𝜑𝑇 ⊆ (𝑍𝑈))
1716ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑇 ⊆ (𝑍𝑈))
18 simplrl 795 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑥𝑇)
19 simplrr 796 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑢𝑇)
20 simprl 787 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑦𝑈)
21 simprr 789 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → 𝑣𝑈)
223, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21subgdisjb 18464 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑥 + 𝑦) = (𝑢 + 𝑣) ↔ (𝑥 = 𝑢𝑦 = 𝑣)))
23 simpl 476 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝑥 = 𝑢)
2422, 23syl6bi 245 . . . . . . 7 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑥 + 𝑦) = (𝑢 + 𝑣) → 𝑥 = 𝑢))
259, 24syl5 34 . . . . . 6 (((𝜑 ∧ (𝑥𝑇𝑢𝑇)) ∧ (𝑦𝑈𝑣𝑈)) → ((𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2625rexlimdvva 3248 . . . . 5 ((𝜑 ∧ (𝑥𝑇𝑢𝑇)) → (∃𝑦𝑈𝑣𝑈 (𝑋 = (𝑥 + 𝑦) ∧ 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
278, 26syl5bir 235 . . . 4 ((𝜑 ∧ (𝑥𝑇𝑢𝑇)) → ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2827ralrimivva 3180 . . 3 (𝜑 → ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
2928adantr 474 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢))
30 oveq1 6917 . . . . . 6 (𝑥 = 𝑢 → (𝑥 + 𝑦) = (𝑢 + 𝑦))
3130eqeq2d 2835 . . . . 5 (𝑥 = 𝑢 → (𝑋 = (𝑥 + 𝑦) ↔ 𝑋 = (𝑢 + 𝑦)))
3231rexbidv 3262 . . . 4 (𝑥 = 𝑢 → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (𝑢 + 𝑦)))
33 oveq2 6918 . . . . . 6 (𝑦 = 𝑣 → (𝑢 + 𝑦) = (𝑢 + 𝑣))
3433eqeq2d 2835 . . . . 5 (𝑦 = 𝑣 → (𝑋 = (𝑢 + 𝑦) ↔ 𝑋 = (𝑢 + 𝑣)))
3534cbvrexv 3384 . . . 4 (∃𝑦𝑈 𝑋 = (𝑢 + 𝑦) ↔ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣))
3632, 35syl6bb 279 . . 3 (𝑥 = 𝑢 → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)))
3736reu4 3625 . 2 (∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ (∃𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∀𝑥𝑇𝑢𝑇 ((∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ∧ ∃𝑣𝑈 𝑋 = (𝑢 + 𝑣)) → 𝑥 = 𝑢)))
387, 29, 37sylanbrc 578 1 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  wrex 3118  ∃!wreu 3119  cin 3797  wss 3798  {csn 4399  cfv 6127  (class class class)co 6910  +gcplusg 16312  0gc0g 16460  SubGrpcsubg 17946  Cntzccntz 18105  LSSumclsm 18407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-cntz 18107  df-lsm 18409
This theorem is referenced by:  pj1f  18468  pj1id  18470
  Copyright terms: Public domain W3C validator