| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjssdif2i | Structured version Visualization version GIF version | ||
| Description: The projection subspace of the difference between two projectors. Part 2 of Theorem 29.3 of [Halmos] p. 48 (shortened with pjssposi 32152). (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjco.1 | ⊢ 𝐺 ∈ Cℋ |
| pjco.2 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| pjssdif2i | ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjco.2 | . . . . . . . 8 ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | pjfi 31684 | . . . . . . 7 ⊢ (projℎ‘𝐻): ℋ⟶ ℋ |
| 3 | pjco.1 | . . . . . . . 8 ⊢ 𝐺 ∈ Cℋ | |
| 4 | 3 | pjfi 31684 | . . . . . . 7 ⊢ (projℎ‘𝐺): ℋ⟶ ℋ |
| 5 | hodval 31722 | . . . . . . 7 ⊢ (((projℎ‘𝐻): ℋ⟶ ℋ ∧ (projℎ‘𝐺): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) = (((projℎ‘𝐻)‘𝑥) −ℎ ((projℎ‘𝐺)‘𝑥))) | |
| 6 | 2, 4, 5 | mp3an12 1453 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) = (((projℎ‘𝐻)‘𝑥) −ℎ ((projℎ‘𝐺)‘𝑥))) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) = (((projℎ‘𝐻)‘𝑥) −ℎ ((projℎ‘𝐺)‘𝑥))) |
| 8 | 1, 3 | pjssmi 32145 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (𝐺 ⊆ 𝐻 → (((projℎ‘𝐻)‘𝑥) −ℎ ((projℎ‘𝐺)‘𝑥)) = ((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥))) |
| 9 | 8 | impcom 407 | . . . . 5 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐻)‘𝑥) −ℎ ((projℎ‘𝐺)‘𝑥)) = ((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥)) |
| 10 | 7, 9 | eqtrd 2764 | . . . 4 ⊢ ((𝐺 ⊆ 𝐻 ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) = ((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥)) |
| 11 | 10 | ralrimiva 3125 | . . 3 ⊢ (𝐺 ⊆ 𝐻 → ∀𝑥 ∈ ℋ (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) = ((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥)) |
| 12 | 2, 4 | hosubfni 31751 | . . . 4 ⊢ ((projℎ‘𝐻) −op (projℎ‘𝐺)) Fn ℋ |
| 13 | 3 | choccli 31287 | . . . . . 6 ⊢ (⊥‘𝐺) ∈ Cℋ |
| 14 | 1, 13 | chincli 31440 | . . . . 5 ⊢ (𝐻 ∩ (⊥‘𝐺)) ∈ Cℋ |
| 15 | 14 | pjfni 31681 | . . . 4 ⊢ (projℎ‘(𝐻 ∩ (⊥‘𝐺))) Fn ℋ |
| 16 | eqfnfv 6985 | . . . 4 ⊢ ((((projℎ‘𝐻) −op (projℎ‘𝐺)) Fn ℋ ∧ (projℎ‘(𝐻 ∩ (⊥‘𝐺))) Fn ℋ) → (((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) ↔ ∀𝑥 ∈ ℋ (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) = ((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥))) | |
| 17 | 12, 15, 16 | mp2an 692 | . . 3 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) ↔ ∀𝑥 ∈ ℋ (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) = ((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥)) |
| 18 | 11, 17 | sylibr 234 | . 2 ⊢ (𝐺 ⊆ 𝐻 → ((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺)))) |
| 19 | 14 | pjige0i 31670 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 0 ≤ (((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥) ·ih 𝑥)) |
| 20 | 19 | adantl 481 | . . . . 5 ⊢ ((((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) ∧ 𝑥 ∈ ℋ) → 0 ≤ (((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥) ·ih 𝑥)) |
| 21 | fveq1 6839 | . . . . . . 7 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) → (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) = ((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥)) | |
| 22 | 21 | oveq1d 7384 | . . . . . 6 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) → ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) = (((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥) ·ih 𝑥)) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ ((((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) ∧ 𝑥 ∈ ℋ) → ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) = (((projℎ‘(𝐻 ∩ (⊥‘𝐺)))‘𝑥) ·ih 𝑥)) |
| 24 | 20, 23 | breqtrrd 5130 | . . . 4 ⊢ ((((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) ∧ 𝑥 ∈ ℋ) → 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥)) |
| 25 | 24 | ralrimiva 3125 | . . 3 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) → ∀𝑥 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥)) |
| 26 | 3, 1 | pjssposi 32152 | . . 3 ⊢ (∀𝑥 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) ↔ 𝐺 ⊆ 𝐻) |
| 27 | 25, 26 | sylib 218 | . 2 ⊢ (((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺))) → 𝐺 ⊆ 𝐻) |
| 28 | 18, 27 | impbii 209 | 1 ⊢ (𝐺 ⊆ 𝐻 ↔ ((projℎ‘𝐻) −op (projℎ‘𝐺)) = (projℎ‘(𝐻 ∩ (⊥‘𝐺)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3910 ⊆ wss 3911 class class class wbr 5102 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 0cc0 11046 ≤ cle 11187 ℋchba 30899 ·ih csp 30902 −ℎ cmv 30905 Cℋ cch 30909 ⊥cort 30910 projℎcpjh 30917 −op chod 30920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-cc 10366 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 ax-mulf 11126 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 ax-hv0cl 30983 ax-hvaddid 30984 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 ax-hvdistr2 30989 ax-hvmul0 30990 ax-hfi 31059 ax-his1 31062 ax-his2 31063 ax-his3 31064 ax-his4 31065 ax-hcompl 31182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9870 df-acn 9873 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-ioo 13288 df-ico 13290 df-icc 13291 df-fz 13447 df-fzo 13594 df-fl 13732 df-seq 13945 df-exp 14005 df-hash 14274 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15431 df-rlim 15432 df-sum 15630 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17362 df-topn 17363 df-0g 17381 df-gsum 17382 df-topgen 17383 df-pt 17384 df-prds 17387 df-xrs 17442 df-qtop 17447 df-imas 17448 df-xps 17450 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19232 df-cmn 19697 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-cn 23148 df-cnp 23149 df-lm 23150 df-haus 23236 df-tx 23483 df-hmeo 23676 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24242 df-ms 24243 df-tms 24244 df-cfil 25189 df-cau 25190 df-cmet 25191 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-vs 30579 df-nmcv 30580 df-ims 30581 df-dip 30681 df-ssp 30702 df-ph 30793 df-cbn 30843 df-hnorm 30948 df-hba 30949 df-hvsub 30951 df-hlim 30952 df-hcau 30953 df-sh 31187 df-ch 31201 df-oc 31232 df-ch0 31233 df-shs 31288 df-pjh 31375 df-hodif 31712 |
| This theorem is referenced by: pjssdif1i 32155 |
| Copyright terms: Public domain | W3C validator |