MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poslubdg Structured version   Visualization version   GIF version

Theorem poslubdg 18113
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
poslubdg.l = (le‘𝐾)
poslubdg.b (𝜑𝐵 = (Base‘𝐾))
poslubdg.u (𝜑𝑈 = (lub‘𝐾))
poslubdg.k (𝜑𝐾 ∈ Poset)
poslubdg.s (𝜑𝑆𝐵)
poslubdg.t (𝜑𝑇𝐵)
poslubdg.ub ((𝜑𝑥𝑆) → 𝑥 𝑇)
poslubdg.le ((𝜑𝑦𝐵 ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
Assertion
Ref Expression
poslubdg (𝜑 → (𝑈𝑆) = 𝑇)
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦   𝑥,𝑈,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦

Proof of Theorem poslubdg
StepHypRef Expression
1 poslubdg.u . . 3 (𝜑𝑈 = (lub‘𝐾))
21fveq1d 6770 . 2 (𝜑 → (𝑈𝑆) = ((lub‘𝐾)‘𝑆))
3 poslubdg.l . . 3 = (le‘𝐾)
4 eqid 2739 . . 3 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2739 . . 3 (lub‘𝐾) = (lub‘𝐾)
6 poslubdg.k . . 3 (𝜑𝐾 ∈ Poset)
7 poslubdg.s . . . 4 (𝜑𝑆𝐵)
8 poslubdg.b . . . 4 (𝜑𝐵 = (Base‘𝐾))
97, 8sseqtrd 3965 . . 3 (𝜑𝑆 ⊆ (Base‘𝐾))
10 poslubdg.t . . . 4 (𝜑𝑇𝐵)
1110, 8eleqtrd 2842 . . 3 (𝜑𝑇 ∈ (Base‘𝐾))
12 poslubdg.ub . . 3 ((𝜑𝑥𝑆) → 𝑥 𝑇)
138eleq2d 2825 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
1413biimpar 477 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
15143adant3 1130 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑦𝐵)
16 poslubdg.le . . . 4 ((𝜑𝑦𝐵 ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
1715, 16syld3an2 1409 . . 3 ((𝜑𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
183, 4, 5, 6, 9, 11, 12, 17poslubd 18112 . 2 (𝜑 → ((lub‘𝐾)‘𝑆) = 𝑇)
192, 18eqtrd 2779 1 (𝜑 → (𝑈𝑆) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  wss 3891   class class class wbr 5078  cfv 6430  Basecbs 16893  lecple 16950  Posetcpo 18006  lubclub 18008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-proset 17994  df-poset 18012  df-lub 18045
This theorem is referenced by:  posglbdg  18114  mrelatlub  18261  ipolub  46226
  Copyright terms: Public domain W3C validator