MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poslubdg Structured version   Visualization version   GIF version

Theorem poslubdg 18459
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
poslubdg.l = (le‘𝐾)
poslubdg.b (𝜑𝐵 = (Base‘𝐾))
poslubdg.u (𝜑𝑈 = (lub‘𝐾))
poslubdg.k (𝜑𝐾 ∈ Poset)
poslubdg.s (𝜑𝑆𝐵)
poslubdg.t (𝜑𝑇𝐵)
poslubdg.ub ((𝜑𝑥𝑆) → 𝑥 𝑇)
poslubdg.le ((𝜑𝑦𝐵 ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
Assertion
Ref Expression
poslubdg (𝜑 → (𝑈𝑆) = 𝑇)
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦   𝑥,𝑈,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦

Proof of Theorem poslubdg
StepHypRef Expression
1 poslubdg.u . . 3 (𝜑𝑈 = (lub‘𝐾))
21fveq1d 6908 . 2 (𝜑 → (𝑈𝑆) = ((lub‘𝐾)‘𝑆))
3 poslubdg.l . . 3 = (le‘𝐾)
4 eqid 2737 . . 3 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2737 . . 3 (lub‘𝐾) = (lub‘𝐾)
6 poslubdg.k . . 3 (𝜑𝐾 ∈ Poset)
7 poslubdg.s . . . 4 (𝜑𝑆𝐵)
8 poslubdg.b . . . 4 (𝜑𝐵 = (Base‘𝐾))
97, 8sseqtrd 4020 . . 3 (𝜑𝑆 ⊆ (Base‘𝐾))
10 poslubdg.t . . . 4 (𝜑𝑇𝐵)
1110, 8eleqtrd 2843 . . 3 (𝜑𝑇 ∈ (Base‘𝐾))
12 poslubdg.ub . . 3 ((𝜑𝑥𝑆) → 𝑥 𝑇)
138eleq2d 2827 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
1413biimpar 477 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
15143adant3 1133 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑦𝐵)
16 poslubdg.le . . . 4 ((𝜑𝑦𝐵 ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
1715, 16syld3an2 1413 . . 3 ((𝜑𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
183, 4, 5, 6, 9, 11, 12, 17poslubd 18458 . 2 (𝜑 → ((lub‘𝐾)‘𝑆) = 𝑇)
192, 18eqtrd 2777 1 (𝜑 → (𝑈𝑆) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wss 3951   class class class wbr 5143  cfv 6561  Basecbs 17247  lecple 17304  Posetcpo 18353  lubclub 18355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-proset 18340  df-poset 18359  df-lub 18391
This theorem is referenced by:  posglbdg  18460  mrelatlub  18607  ipolub  48877
  Copyright terms: Public domain W3C validator