Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > poslubdg | Structured version Visualization version GIF version |
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
poslubdg.l | ⊢ ≤ = (le‘𝐾) |
poslubdg.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
poslubdg.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) |
poslubdg.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
poslubdg.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
poslubdg.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
poslubdg.ub | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) |
poslubdg.le | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
Ref | Expression |
---|---|
poslubdg | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poslubdg.u | . . 3 ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) | |
2 | 1 | fveq1d 6768 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = ((lub‘𝐾)‘𝑆)) |
3 | poslubdg.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | eqid 2738 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
6 | poslubdg.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
7 | poslubdg.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
8 | poslubdg.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
9 | 7, 8 | sseqtrd 3960 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐾)) |
10 | poslubdg.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
11 | 10, 8 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
12 | poslubdg.ub | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) | |
13 | 8 | eleq2d 2824 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
14 | 13 | biimpar 478 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ 𝐵) |
15 | 14 | 3adant3 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐵) |
16 | poslubdg.le | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) | |
17 | 15, 16 | syld3an2 1410 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
18 | 3, 4, 5, 6, 9, 11, 12, 17 | poslubd 18141 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘𝑆) = 𝑇) |
19 | 2, 18 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3886 class class class wbr 5073 ‘cfv 6426 Basecbs 16922 lecple 16979 Posetcpo 18035 lubclub 18037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-proset 18023 df-poset 18041 df-lub 18074 |
This theorem is referenced by: posglbdg 18143 mrelatlub 18290 ipolub 46252 |
Copyright terms: Public domain | W3C validator |