![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > poslubdg | Structured version Visualization version GIF version |
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
poslubdg.l | β’ β€ = (leβπΎ) |
poslubdg.b | β’ (π β π΅ = (BaseβπΎ)) |
poslubdg.u | β’ (π β π = (lubβπΎ)) |
poslubdg.k | β’ (π β πΎ β Poset) |
poslubdg.s | β’ (π β π β π΅) |
poslubdg.t | β’ (π β π β π΅) |
poslubdg.ub | β’ ((π β§ π₯ β π) β π₯ β€ π) |
poslubdg.le | β’ ((π β§ π¦ β π΅ β§ βπ₯ β π π₯ β€ π¦) β π β€ π¦) |
Ref | Expression |
---|---|
poslubdg | β’ (π β (πβπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poslubdg.u | . . 3 β’ (π β π = (lubβπΎ)) | |
2 | 1 | fveq1d 6894 | . 2 β’ (π β (πβπ) = ((lubβπΎ)βπ)) |
3 | poslubdg.l | . . 3 β’ β€ = (leβπΎ) | |
4 | eqid 2733 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
5 | eqid 2733 | . . 3 β’ (lubβπΎ) = (lubβπΎ) | |
6 | poslubdg.k | . . 3 β’ (π β πΎ β Poset) | |
7 | poslubdg.s | . . . 4 β’ (π β π β π΅) | |
8 | poslubdg.b | . . . 4 β’ (π β π΅ = (BaseβπΎ)) | |
9 | 7, 8 | sseqtrd 4023 | . . 3 β’ (π β π β (BaseβπΎ)) |
10 | poslubdg.t | . . . 4 β’ (π β π β π΅) | |
11 | 10, 8 | eleqtrd 2836 | . . 3 β’ (π β π β (BaseβπΎ)) |
12 | poslubdg.ub | . . 3 β’ ((π β§ π₯ β π) β π₯ β€ π) | |
13 | 8 | eleq2d 2820 | . . . . . 6 β’ (π β (π¦ β π΅ β π¦ β (BaseβπΎ))) |
14 | 13 | biimpar 479 | . . . . 5 β’ ((π β§ π¦ β (BaseβπΎ)) β π¦ β π΅) |
15 | 14 | 3adant3 1133 | . . . 4 β’ ((π β§ π¦ β (BaseβπΎ) β§ βπ₯ β π π₯ β€ π¦) β π¦ β π΅) |
16 | poslubdg.le | . . . 4 β’ ((π β§ π¦ β π΅ β§ βπ₯ β π π₯ β€ π¦) β π β€ π¦) | |
17 | 15, 16 | syld3an2 1412 | . . 3 β’ ((π β§ π¦ β (BaseβπΎ) β§ βπ₯ β π π₯ β€ π¦) β π β€ π¦) |
18 | 3, 4, 5, 6, 9, 11, 12, 17 | poslubd 18366 | . 2 β’ (π β ((lubβπΎ)βπ) = π) |
19 | 2, 18 | eqtrd 2773 | 1 β’ (π β (πβπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 β wss 3949 class class class wbr 5149 βcfv 6544 Basecbs 17144 lecple 17204 Posetcpo 18260 lubclub 18262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-proset 18248 df-poset 18266 df-lub 18299 |
This theorem is referenced by: posglbdg 18368 mrelatlub 18515 ipolub 47613 |
Copyright terms: Public domain | W3C validator |