Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > poslubdg | Structured version Visualization version GIF version |
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
poslubdg.l | ⊢ ≤ = (le‘𝐾) |
poslubdg.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
poslubdg.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) |
poslubdg.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
poslubdg.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
poslubdg.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
poslubdg.ub | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) |
poslubdg.le | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
Ref | Expression |
---|---|
poslubdg | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poslubdg.u | . . 3 ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) | |
2 | 1 | fveq1d 6770 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = ((lub‘𝐾)‘𝑆)) |
3 | poslubdg.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | eqid 2739 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | eqid 2739 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
6 | poslubdg.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
7 | poslubdg.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
8 | poslubdg.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
9 | 7, 8 | sseqtrd 3965 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐾)) |
10 | poslubdg.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
11 | 10, 8 | eleqtrd 2842 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
12 | poslubdg.ub | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) | |
13 | 8 | eleq2d 2825 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
14 | 13 | biimpar 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ 𝐵) |
15 | 14 | 3adant3 1130 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐵) |
16 | poslubdg.le | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) | |
17 | 15, 16 | syld3an2 1409 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
18 | 3, 4, 5, 6, 9, 11, 12, 17 | poslubd 18112 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘𝑆) = 𝑇) |
19 | 2, 18 | eqtrd 2779 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ⊆ wss 3891 class class class wbr 5078 ‘cfv 6430 Basecbs 16893 lecple 16950 Posetcpo 18006 lubclub 18008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-proset 17994 df-poset 18012 df-lub 18045 |
This theorem is referenced by: posglbdg 18114 mrelatlub 18261 ipolub 46226 |
Copyright terms: Public domain | W3C validator |