![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > poslubdg | Structured version Visualization version GIF version |
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
poslubdg.l | β’ β€ = (leβπΎ) |
poslubdg.b | β’ (π β π΅ = (BaseβπΎ)) |
poslubdg.u | β’ (π β π = (lubβπΎ)) |
poslubdg.k | β’ (π β πΎ β Poset) |
poslubdg.s | β’ (π β π β π΅) |
poslubdg.t | β’ (π β π β π΅) |
poslubdg.ub | β’ ((π β§ π₯ β π) β π₯ β€ π) |
poslubdg.le | β’ ((π β§ π¦ β π΅ β§ βπ₯ β π π₯ β€ π¦) β π β€ π¦) |
Ref | Expression |
---|---|
poslubdg | β’ (π β (πβπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poslubdg.u | . . 3 β’ (π β π = (lubβπΎ)) | |
2 | 1 | fveq1d 6887 | . 2 β’ (π β (πβπ) = ((lubβπΎ)βπ)) |
3 | poslubdg.l | . . 3 β’ β€ = (leβπΎ) | |
4 | eqid 2726 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
5 | eqid 2726 | . . 3 β’ (lubβπΎ) = (lubβπΎ) | |
6 | poslubdg.k | . . 3 β’ (π β πΎ β Poset) | |
7 | poslubdg.s | . . . 4 β’ (π β π β π΅) | |
8 | poslubdg.b | . . . 4 β’ (π β π΅ = (BaseβπΎ)) | |
9 | 7, 8 | sseqtrd 4017 | . . 3 β’ (π β π β (BaseβπΎ)) |
10 | poslubdg.t | . . . 4 β’ (π β π β π΅) | |
11 | 10, 8 | eleqtrd 2829 | . . 3 β’ (π β π β (BaseβπΎ)) |
12 | poslubdg.ub | . . 3 β’ ((π β§ π₯ β π) β π₯ β€ π) | |
13 | 8 | eleq2d 2813 | . . . . . 6 β’ (π β (π¦ β π΅ β π¦ β (BaseβπΎ))) |
14 | 13 | biimpar 477 | . . . . 5 β’ ((π β§ π¦ β (BaseβπΎ)) β π¦ β π΅) |
15 | 14 | 3adant3 1129 | . . . 4 β’ ((π β§ π¦ β (BaseβπΎ) β§ βπ₯ β π π₯ β€ π¦) β π¦ β π΅) |
16 | poslubdg.le | . . . 4 β’ ((π β§ π¦ β π΅ β§ βπ₯ β π π₯ β€ π¦) β π β€ π¦) | |
17 | 15, 16 | syld3an2 1408 | . . 3 β’ ((π β§ π¦ β (BaseβπΎ) β§ βπ₯ β π π₯ β€ π¦) β π β€ π¦) |
18 | 3, 4, 5, 6, 9, 11, 12, 17 | poslubd 18378 | . 2 β’ (π β ((lubβπΎ)βπ) = π) |
19 | 2, 18 | eqtrd 2766 | 1 β’ (π β (πβπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3055 β wss 3943 class class class wbr 5141 βcfv 6537 Basecbs 17153 lecple 17213 Posetcpo 18272 lubclub 18274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-proset 18260 df-poset 18278 df-lub 18311 |
This theorem is referenced by: posglbdg 18380 mrelatlub 18527 ipolub 47884 |
Copyright terms: Public domain | W3C validator |