MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poslubdg Structured version   Visualization version   GIF version

Theorem poslubdg 18318
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
poslubdg.l = (le‘𝐾)
poslubdg.b (𝜑𝐵 = (Base‘𝐾))
poslubdg.u (𝜑𝑈 = (lub‘𝐾))
poslubdg.k (𝜑𝐾 ∈ Poset)
poslubdg.s (𝜑𝑆𝐵)
poslubdg.t (𝜑𝑇𝐵)
poslubdg.ub ((𝜑𝑥𝑆) → 𝑥 𝑇)
poslubdg.le ((𝜑𝑦𝐵 ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
Assertion
Ref Expression
poslubdg (𝜑 → (𝑈𝑆) = 𝑇)
Distinct variable groups:   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦   𝑥,𝑆,𝑦   𝑥,𝑈,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦

Proof of Theorem poslubdg
StepHypRef Expression
1 poslubdg.u . . 3 (𝜑𝑈 = (lub‘𝐾))
21fveq1d 6824 . 2 (𝜑 → (𝑈𝑆) = ((lub‘𝐾)‘𝑆))
3 poslubdg.l . . 3 = (le‘𝐾)
4 eqid 2731 . . 3 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2731 . . 3 (lub‘𝐾) = (lub‘𝐾)
6 poslubdg.k . . 3 (𝜑𝐾 ∈ Poset)
7 poslubdg.s . . . 4 (𝜑𝑆𝐵)
8 poslubdg.b . . . 4 (𝜑𝐵 = (Base‘𝐾))
97, 8sseqtrd 3966 . . 3 (𝜑𝑆 ⊆ (Base‘𝐾))
10 poslubdg.t . . . 4 (𝜑𝑇𝐵)
1110, 8eleqtrd 2833 . . 3 (𝜑𝑇 ∈ (Base‘𝐾))
12 poslubdg.ub . . 3 ((𝜑𝑥𝑆) → 𝑥 𝑇)
138eleq2d 2817 . . . . . 6 (𝜑 → (𝑦𝐵𝑦 ∈ (Base‘𝐾)))
1413biimpar 477 . . . . 5 ((𝜑𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵)
15143adant3 1132 . . . 4 ((𝜑𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑦𝐵)
16 poslubdg.le . . . 4 ((𝜑𝑦𝐵 ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
1715, 16syld3an2 1413 . . 3 ((𝜑𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥𝑆 𝑥 𝑦) → 𝑇 𝑦)
183, 4, 5, 6, 9, 11, 12, 17poslubd 18317 . 2 (𝜑 → ((lub‘𝐾)‘𝑆) = 𝑇)
192, 18eqtrd 2766 1 (𝜑 → (𝑈𝑆) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wss 3897   class class class wbr 5089  cfv 6481  Basecbs 17120  lecple 17168  Posetcpo 18213  lubclub 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-proset 18200  df-poset 18219  df-lub 18250
This theorem is referenced by:  posglbdg  18319  mrelatlub  18468  ipolub  49087
  Copyright terms: Public domain W3C validator