![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > poslubdg | Structured version Visualization version GIF version |
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
poslubdg.l | ⊢ ≤ = (le‘𝐾) |
poslubdg.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
poslubdg.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) |
poslubdg.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
poslubdg.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
poslubdg.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
poslubdg.ub | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) |
poslubdg.le | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
Ref | Expression |
---|---|
poslubdg | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poslubdg.u | . . 3 ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) | |
2 | 1 | fveq1d 6893 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = ((lub‘𝐾)‘𝑆)) |
3 | poslubdg.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | eqid 2726 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | eqid 2726 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
6 | poslubdg.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
7 | poslubdg.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
8 | poslubdg.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
9 | 7, 8 | sseqtrd 4020 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐾)) |
10 | poslubdg.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
11 | 10, 8 | eleqtrd 2828 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
12 | poslubdg.ub | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) | |
13 | 8 | eleq2d 2812 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
14 | 13 | biimpar 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ 𝐵) |
15 | 14 | 3adant3 1129 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐵) |
16 | poslubdg.le | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) | |
17 | 15, 16 | syld3an2 1408 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
18 | 3, 4, 5, 6, 9, 11, 12, 17 | poslubd 18431 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘𝑆) = 𝑇) |
19 | 2, 18 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ⊆ wss 3947 class class class wbr 5144 ‘cfv 6544 Basecbs 17206 lecple 17266 Posetcpo 18325 lubclub 18327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-proset 18313 df-poset 18331 df-lub 18364 |
This theorem is referenced by: posglbdg 18433 mrelatlub 18580 ipolub 48348 |
Copyright terms: Public domain | W3C validator |