| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > poslubdg | Structured version Visualization version GIF version | ||
| Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| poslubdg.l | ⊢ ≤ = (le‘𝐾) |
| poslubdg.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| poslubdg.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) |
| poslubdg.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| poslubdg.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| poslubdg.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
| poslubdg.ub | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) |
| poslubdg.le | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
| Ref | Expression |
|---|---|
| poslubdg | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poslubdg.u | . . 3 ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) | |
| 2 | 1 | fveq1d 6824 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = ((lub‘𝐾)‘𝑆)) |
| 3 | poslubdg.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 5 | eqid 2731 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 6 | poslubdg.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 7 | poslubdg.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 8 | poslubdg.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 9 | 7, 8 | sseqtrd 3966 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐾)) |
| 10 | poslubdg.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
| 11 | 10, 8 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
| 12 | poslubdg.ub | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) | |
| 13 | 8 | eleq2d 2817 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
| 14 | 13 | biimpar 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ 𝐵) |
| 15 | 14 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐵) |
| 16 | poslubdg.le | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) | |
| 17 | 15, 16 | syld3an2 1413 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
| 18 | 3, 4, 5, 6, 9, 11, 12, 17 | poslubd 18317 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘𝑆) = 𝑇) |
| 19 | 2, 18 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 lecple 17168 Posetcpo 18213 lubclub 18215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-proset 18200 df-poset 18219 df-lub 18250 |
| This theorem is referenced by: posglbdg 18319 mrelatlub 18468 ipolub 49087 |
| Copyright terms: Public domain | W3C validator |