![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > poslubdg | Structured version Visualization version GIF version |
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
poslubdg.l | ⊢ ≤ = (le‘𝐾) |
poslubdg.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
poslubdg.u | ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) |
poslubdg.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
poslubdg.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
poslubdg.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
poslubdg.ub | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) |
poslubdg.le | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
Ref | Expression |
---|---|
poslubdg | ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poslubdg.u | . . 3 ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) | |
2 | 1 | fveq1d 6922 | . 2 ⊢ (𝜑 → (𝑈‘𝑆) = ((lub‘𝐾)‘𝑆)) |
3 | poslubdg.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | eqid 2740 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
6 | poslubdg.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
7 | poslubdg.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
8 | poslubdg.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
9 | 7, 8 | sseqtrd 4049 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐾)) |
10 | poslubdg.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
11 | 10, 8 | eleqtrd 2846 | . . 3 ⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
12 | poslubdg.ub | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) | |
13 | 8 | eleq2d 2830 | . . . . . 6 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝐾))) |
14 | 13 | biimpar 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ 𝐵) |
15 | 14 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐵) |
16 | poslubdg.le | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) | |
17 | 15, 16 | syld3an2 1411 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝐾) ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) |
18 | 3, 4, 5, 6, 9, 11, 12, 17 | poslubd 18483 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘𝑆) = 𝑇) |
19 | 2, 18 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 Posetcpo 18377 lubclub 18379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-proset 18365 df-poset 18383 df-lub 18416 |
This theorem is referenced by: posglbdg 18485 mrelatlub 18632 ipolub 48660 |
Copyright terms: Public domain | W3C validator |