| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressplusf | Structured version Visualization version GIF version | ||
| Description: The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
| Ref | Expression |
|---|---|
| ressplusf.1 | ⊢ 𝐵 = (Base‘𝐺) |
| ressplusf.2 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressplusf.3 | ⊢ ⨣ = (+g‘𝐺) |
| ressplusf.4 | ⊢ ⨣ Fn (𝐵 × 𝐵) |
| ressplusf.5 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ressplusf | ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusf.5 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | resmpo 7553 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦))) | |
| 3 | 1, 1, 2 | mp2an 692 | . 2 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦)) |
| 4 | ressplusf.4 | . . . 4 ⊢ ⨣ Fn (𝐵 × 𝐵) | |
| 5 | fnov 7564 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) ↔ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦))) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) |
| 7 | 6 | reseq1i 5993 | . 2 ⊢ ( ⨣ ↾ (𝐴 × 𝐴)) = ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) |
| 8 | ressplusf.2 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 9 | ressplusf.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 10 | 8, 9 | ressbas2 17283 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝐻)) |
| 11 | 1, 10 | ax-mp 5 | . . 3 ⊢ 𝐴 = (Base‘𝐻) |
| 12 | ressplusf.3 | . . . 4 ⊢ ⨣ = (+g‘𝐺) | |
| 13 | 9 | fvexi 6920 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 14 | 13, 1 | ssexi 5322 | . . . . 5 ⊢ 𝐴 ∈ V |
| 15 | eqid 2737 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | 8, 15 | ressplusg 17334 | . . . . 5 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 17 | 14, 16 | ax-mp 5 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐻) |
| 18 | 12, 17 | eqtri 2765 | . . 3 ⊢ ⨣ = (+g‘𝐻) |
| 19 | eqid 2737 | . . 3 ⊢ (+𝑓‘𝐻) = (+𝑓‘𝐻) | |
| 20 | 11, 18, 19 | plusffval 18659 | . 2 ⊢ (+𝑓‘𝐻) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦)) |
| 21 | 3, 7, 20 | 3eqtr4ri 2776 | 1 ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 × cxp 5683 ↾ cres 5687 Fn wfn 6556 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17247 ↾s cress 17274 +gcplusg 17297 +𝑓cplusf 18650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-plusf 18652 |
| This theorem is referenced by: xrge0pluscn 33939 xrge0tmdALT 33945 |
| Copyright terms: Public domain | W3C validator |