| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressplusf | Structured version Visualization version GIF version | ||
| Description: The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
| Ref | Expression |
|---|---|
| ressplusf.1 | ⊢ 𝐵 = (Base‘𝐺) |
| ressplusf.2 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressplusf.3 | ⊢ ⨣ = (+g‘𝐺) |
| ressplusf.4 | ⊢ ⨣ Fn (𝐵 × 𝐵) |
| ressplusf.5 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ressplusf | ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusf.5 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | resmpo 7461 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦))) | |
| 3 | 1, 1, 2 | mp2an 692 | . 2 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦)) |
| 4 | ressplusf.4 | . . . 4 ⊢ ⨣ Fn (𝐵 × 𝐵) | |
| 5 | fnov 7472 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) ↔ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦))) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) |
| 7 | 6 | reseq1i 5919 | . 2 ⊢ ( ⨣ ↾ (𝐴 × 𝐴)) = ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) |
| 8 | ressplusf.2 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 9 | ressplusf.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 10 | 8, 9 | ressbas2 17144 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝐻)) |
| 11 | 1, 10 | ax-mp 5 | . . 3 ⊢ 𝐴 = (Base‘𝐻) |
| 12 | ressplusf.3 | . . . 4 ⊢ ⨣ = (+g‘𝐺) | |
| 13 | 9 | fvexi 6831 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 14 | 13, 1 | ssexi 5255 | . . . . 5 ⊢ 𝐴 ∈ V |
| 15 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | 8, 15 | ressplusg 17190 | . . . . 5 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 17 | 14, 16 | ax-mp 5 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐻) |
| 18 | 12, 17 | eqtri 2754 | . . 3 ⊢ ⨣ = (+g‘𝐻) |
| 19 | eqid 2731 | . . 3 ⊢ (+𝑓‘𝐻) = (+𝑓‘𝐻) | |
| 20 | 11, 18, 19 | plusffval 18549 | . 2 ⊢ (+𝑓‘𝐻) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦)) |
| 21 | 3, 7, 20 | 3eqtr4ri 2765 | 1 ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 × cxp 5609 ↾ cres 5613 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 Basecbs 17115 ↾s cress 17136 +gcplusg 17156 +𝑓cplusf 18540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-plusf 18542 |
| This theorem is referenced by: xrge0pluscn 33945 xrge0tmdALT 33951 |
| Copyright terms: Public domain | W3C validator |