Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressplusf Structured version   Visualization version   GIF version

Theorem ressplusf 32701
Description: The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.)
Hypotheses
Ref Expression
ressplusf.1 𝐵 = (Base‘𝐺)
ressplusf.2 𝐻 = (𝐺s 𝐴)
ressplusf.3 = (+g𝐺)
ressplusf.4 Fn (𝐵 × 𝐵)
ressplusf.5 𝐴𝐵
Assertion
Ref Expression
ressplusf (+𝑓𝐻) = ( ↾ (𝐴 × 𝐴))

Proof of Theorem ressplusf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressplusf.5 . . 3 𝐴𝐵
2 resmpo 7535 . . 3 ((𝐴𝐵𝐴𝐵) → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦)))
31, 1, 2mp2an 690 . 2 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦))
4 ressplusf.4 . . . 4 Fn (𝐵 × 𝐵)
5 fnov 7547 . . . 4 ( Fn (𝐵 × 𝐵) ↔ = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)))
64, 5mpbi 229 . . 3 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦))
76reseq1i 5973 . 2 ( ↾ (𝐴 × 𝐴)) = ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴))
8 ressplusf.2 . . . . 5 𝐻 = (𝐺s 𝐴)
9 ressplusf.1 . . . . 5 𝐵 = (Base‘𝐺)
108, 9ressbas2 17215 . . . 4 (𝐴𝐵𝐴 = (Base‘𝐻))
111, 10ax-mp 5 . . 3 𝐴 = (Base‘𝐻)
12 ressplusf.3 . . . 4 = (+g𝐺)
139fvexi 6904 . . . . . 6 𝐵 ∈ V
1413, 1ssexi 5315 . . . . 5 𝐴 ∈ V
15 eqid 2725 . . . . . 6 (+g𝐺) = (+g𝐺)
168, 15ressplusg 17268 . . . . 5 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
1714, 16ax-mp 5 . . . 4 (+g𝐺) = (+g𝐻)
1812, 17eqtri 2753 . . 3 = (+g𝐻)
19 eqid 2725 . . 3 (+𝑓𝐻) = (+𝑓𝐻)
2011, 18, 19plusffval 18603 . 2 (+𝑓𝐻) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦))
213, 7, 203eqtr4ri 2764 1 (+𝑓𝐻) = ( ↾ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  Vcvv 3463  wss 3939   × cxp 5668  cres 5672   Fn wfn 6536  cfv 6541  (class class class)co 7414  cmpo 7416  Basecbs 17177  s cress 17206  +gcplusg 17230  +𝑓cplusf 18594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-plusf 18596
This theorem is referenced by:  xrge0pluscn  33570  xrge0tmdALT  33576
  Copyright terms: Public domain W3C validator