| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressplusf | Structured version Visualization version GIF version | ||
| Description: The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
| Ref | Expression |
|---|---|
| ressplusf.1 | ⊢ 𝐵 = (Base‘𝐺) |
| ressplusf.2 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressplusf.3 | ⊢ ⨣ = (+g‘𝐺) |
| ressplusf.4 | ⊢ ⨣ Fn (𝐵 × 𝐵) |
| ressplusf.5 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ressplusf | ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressplusf.5 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | resmpo 7475 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦))) | |
| 3 | 1, 1, 2 | mp2an 692 | . 2 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦)) |
| 4 | ressplusf.4 | . . . 4 ⊢ ⨣ Fn (𝐵 × 𝐵) | |
| 5 | fnov 7486 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) ↔ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦))) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) |
| 7 | 6 | reseq1i 5931 | . 2 ⊢ ( ⨣ ↾ (𝐴 × 𝐴)) = ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) |
| 8 | ressplusf.2 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 9 | ressplusf.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 10 | 8, 9 | ressbas2 17156 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝐻)) |
| 11 | 1, 10 | ax-mp 5 | . . 3 ⊢ 𝐴 = (Base‘𝐻) |
| 12 | ressplusf.3 | . . . 4 ⊢ ⨣ = (+g‘𝐺) | |
| 13 | 9 | fvexi 6845 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 14 | 13, 1 | ssexi 5264 | . . . . 5 ⊢ 𝐴 ∈ V |
| 15 | eqid 2733 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | 8, 15 | ressplusg 17202 | . . . . 5 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
| 17 | 14, 16 | ax-mp 5 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐻) |
| 18 | 12, 17 | eqtri 2756 | . . 3 ⊢ ⨣ = (+g‘𝐻) |
| 19 | eqid 2733 | . . 3 ⊢ (+𝑓‘𝐻) = (+𝑓‘𝐻) | |
| 20 | 11, 18, 19 | plusffval 18562 | . 2 ⊢ (+𝑓‘𝐻) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦)) |
| 21 | 3, 7, 20 | 3eqtr4ri 2767 | 1 ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 × cxp 5619 ↾ cres 5623 Fn wfn 6484 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 Basecbs 17127 ↾s cress 17148 +gcplusg 17168 +𝑓cplusf 18553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-plusf 18555 |
| This theorem is referenced by: xrge0pluscn 34025 xrge0tmdALT 34031 |
| Copyright terms: Public domain | W3C validator |