![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressplusf | Structured version Visualization version GIF version |
Description: The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
Ref | Expression |
---|---|
ressplusf.1 | ⊢ 𝐵 = (Base‘𝐺) |
ressplusf.2 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressplusf.3 | ⊢ ⨣ = (+g‘𝐺) |
ressplusf.4 | ⊢ ⨣ Fn (𝐵 × 𝐵) |
ressplusf.5 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ressplusf | ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressplusf.5 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | resmpo 7535 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦))) | |
3 | 1, 1, 2 | mp2an 690 | . 2 ⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦)) |
4 | ressplusf.4 | . . . 4 ⊢ ⨣ Fn (𝐵 × 𝐵) | |
5 | fnov 7547 | . . . 4 ⊢ ( ⨣ Fn (𝐵 × 𝐵) ↔ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦))) | |
6 | 4, 5 | mpbi 229 | . . 3 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) |
7 | 6 | reseq1i 5973 | . 2 ⊢ ( ⨣ ↾ (𝐴 × 𝐴)) = ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ⨣ 𝑦)) ↾ (𝐴 × 𝐴)) |
8 | ressplusf.2 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
9 | ressplusf.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
10 | 8, 9 | ressbas2 17215 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝐻)) |
11 | 1, 10 | ax-mp 5 | . . 3 ⊢ 𝐴 = (Base‘𝐻) |
12 | ressplusf.3 | . . . 4 ⊢ ⨣ = (+g‘𝐺) | |
13 | 9 | fvexi 6904 | . . . . . 6 ⊢ 𝐵 ∈ V |
14 | 13, 1 | ssexi 5315 | . . . . 5 ⊢ 𝐴 ∈ V |
15 | eqid 2725 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | 8, 15 | ressplusg 17268 | . . . . 5 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
17 | 14, 16 | ax-mp 5 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐻) |
18 | 12, 17 | eqtri 2753 | . . 3 ⊢ ⨣ = (+g‘𝐻) |
19 | eqid 2725 | . . 3 ⊢ (+𝑓‘𝐻) = (+𝑓‘𝐻) | |
20 | 11, 18, 19 | plusffval 18603 | . 2 ⊢ (+𝑓‘𝐻) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑥 ⨣ 𝑦)) |
21 | 3, 7, 20 | 3eqtr4ri 2764 | 1 ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3463 ⊆ wss 3939 × cxp 5668 ↾ cres 5672 Fn wfn 6536 ‘cfv 6541 (class class class)co 7414 ∈ cmpo 7416 Basecbs 17177 ↾s cress 17206 +gcplusg 17230 +𝑓cplusf 18594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-plusf 18596 |
This theorem is referenced by: xrge0pluscn 33570 xrge0tmdALT 33576 |
Copyright terms: Public domain | W3C validator |