Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressplusf Structured version   Visualization version   GIF version

Theorem ressplusf 30641
Description: The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.)
Hypotheses
Ref Expression
ressplusf.1 𝐵 = (Base‘𝐺)
ressplusf.2 𝐻 = (𝐺s 𝐴)
ressplusf.3 = (+g𝐺)
ressplusf.4 Fn (𝐵 × 𝐵)
ressplusf.5 𝐴𝐵
Assertion
Ref Expression
ressplusf (+𝑓𝐻) = ( ↾ (𝐴 × 𝐴))

Proof of Theorem ressplusf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressplusf.5 . . 3 𝐴𝐵
2 resmpo 7275 . . 3 ((𝐴𝐵𝐴𝐵) → ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦)))
31, 1, 2mp2an 690 . 2 ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦))
4 ressplusf.4 . . . 4 Fn (𝐵 × 𝐵)
5 fnov 7285 . . . 4 ( Fn (𝐵 × 𝐵) ↔ = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)))
64, 5mpbi 232 . . 3 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦))
76reseq1i 5852 . 2 ( ↾ (𝐴 × 𝐴)) = ((𝑥𝐵, 𝑦𝐵 ↦ (𝑥 𝑦)) ↾ (𝐴 × 𝐴))
8 ressplusf.2 . . . . 5 𝐻 = (𝐺s 𝐴)
9 ressplusf.1 . . . . 5 𝐵 = (Base‘𝐺)
108, 9ressbas2 16558 . . . 4 (𝐴𝐵𝐴 = (Base‘𝐻))
111, 10ax-mp 5 . . 3 𝐴 = (Base‘𝐻)
12 ressplusf.3 . . . 4 = (+g𝐺)
139fvexi 6687 . . . . . 6 𝐵 ∈ V
1413, 1ssexi 5229 . . . . 5 𝐴 ∈ V
15 eqid 2824 . . . . . 6 (+g𝐺) = (+g𝐺)
168, 15ressplusg 16615 . . . . 5 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
1714, 16ax-mp 5 . . . 4 (+g𝐺) = (+g𝐻)
1812, 17eqtri 2847 . . 3 = (+g𝐻)
19 eqid 2824 . . 3 (+𝑓𝐻) = (+𝑓𝐻)
2011, 18, 19plusffval 17861 . 2 (+𝑓𝐻) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑥 𝑦))
213, 7, 203eqtr4ri 2858 1 (+𝑓𝐻) = ( ↾ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2113  Vcvv 3497  wss 3939   × cxp 5556  cres 5560   Fn wfn 6353  cfv 6358  (class class class)co 7159  cmpo 7161  Basecbs 16486  s cress 16487  +gcplusg 16568  +𝑓cplusf 17852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-plusf 17854
This theorem is referenced by:  xrge0pluscn  31187  xrge0tmdALT  31193
  Copyright terms: Public domain W3C validator