Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgrpsubgsymg Structured version   Visualization version   GIF version

Theorem pgrpsubgsymg 18618
 Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.)
Hypotheses
Ref Expression
pgrpsubgsymgbi.g 𝐺 = (SymGrp‘𝐴)
pgrpsubgsymgbi.b 𝐵 = (Base‘𝐺)
pgrpsubgsymg.c 𝐹 = (Base‘𝑃)
Assertion
Ref Expression
pgrpsubgsymg (𝐴𝑉 → ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubGrp‘𝐺)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑓,𝐹,𝑔
Allowed substitution hints:   𝑃(𝑓,𝑔)   𝐺(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem pgrpsubgsymg
StepHypRef Expression
1 pgrpsubgsymgbi.g . . . . 5 𝐺 = (SymGrp‘𝐴)
21symggrp 18609 . . . 4 (𝐴𝑉𝐺 ∈ Grp)
3 simp1 1133 . . . 4 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝑃 ∈ Grp)
42, 3anim12i 615 . . 3 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐺 ∈ Grp ∧ 𝑃 ∈ Grp))
5 simp2 1134 . . . . 5 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹𝐵)
6 simp3 1135 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
7 eqid 2758 . . . . . . . . . . 11 (𝐴m 𝐴) = (𝐴m 𝐴)
8 eqid 2758 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
91, 7, 8symgplusg 18592 . . . . . . . . . 10 (+g𝐺) = (𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔))
109eqcomi 2767 . . . . . . . . 9 (𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)) = (+g𝐺)
1110reseq1i 5824 . . . . . . . 8 ((𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = ((+g𝐺) ↾ (𝐹 × 𝐹))
12 pgrpsubgsymgbi.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
131, 12symgbasmap 18586 . . . . . . . . . . 11 (𝑓𝐵𝑓 ∈ (𝐴m 𝐴))
1413ssriv 3898 . . . . . . . . . 10 𝐵 ⊆ (𝐴m 𝐴)
15 sstr 3902 . . . . . . . . . 10 ((𝐹𝐵𝐵 ⊆ (𝐴m 𝐴)) → 𝐹 ⊆ (𝐴m 𝐴))
1614, 15mpan2 690 . . . . . . . . 9 (𝐹𝐵𝐹 ⊆ (𝐴m 𝐴))
17 resmpo 7272 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴m 𝐴) ∧ 𝐹 ⊆ (𝐴m 𝐴)) → ((𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
1817anidms 570 . . . . . . . . 9 (𝐹 ⊆ (𝐴m 𝐴) → ((𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
1916, 18syl 17 . . . . . . . 8 (𝐹𝐵 → ((𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
2011, 19syl5reqr 2808 . . . . . . 7 (𝐹𝐵 → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
21203ad2ant2 1131 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
226, 21eqtrd 2793 . . . . 5 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
235, 22jca 515 . . . 4 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))))
2423adantl 485 . . 3 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))))
25 pgrpsubgsymg.c . . . 4 𝐹 = (Base‘𝑃)
2612, 25grpissubg 18380 . . 3 ((𝐺 ∈ Grp ∧ 𝑃 ∈ Grp) → ((𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubGrp‘𝐺)))
274, 24, 26sylc 65 . 2 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → 𝐹 ∈ (SubGrp‘𝐺))
2827ex 416 1 (𝐴𝑉 → ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubGrp‘𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ⊆ wss 3860   × cxp 5526   ↾ cres 5530   ∘ ccom 5532  ‘cfv 6340  (class class class)co 7156   ∈ cmpo 7158   ↑m cmap 8422  Basecbs 16555  +gcplusg 16637  Grpcgrp 18183  SubGrpcsubg 18354  SymGrpcsymg 18576 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-tset 16656  df-0g 16787  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-efmnd 18114  df-grp 18186  df-minusg 18187  df-subg 18357  df-symg 18577 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator