| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgrpsubgsymg | Structured version Visualization version GIF version | ||
| Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.) |
| Ref | Expression |
|---|---|
| pgrpsubgsymgbi.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| pgrpsubgsymgbi.b | ⊢ 𝐵 = (Base‘𝐺) |
| pgrpsubgsymg.c | ⊢ 𝐹 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| pgrpsubgsymg | ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgrpsubgsymgbi.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | 1 | symggrp 19381 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝑃 ∈ Grp) | |
| 4 | 2, 3 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐺 ∈ Grp ∧ 𝑃 ∈ Grp)) |
| 5 | simp2 1137 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ⊆ 𝐵) | |
| 6 | simp3 1138 | . . . . . 6 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 7 | pgrpsubgsymgbi.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 1, 7 | symgbasmap 19358 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ 𝐵 → 𝑓 ∈ (𝐴 ↑m 𝐴)) |
| 9 | 8 | ssriv 3962 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐴 ↑m 𝐴) |
| 10 | sstr 3967 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ↑m 𝐴)) → 𝐹 ⊆ (𝐴 ↑m 𝐴)) | |
| 11 | 9, 10 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐵 → 𝐹 ⊆ (𝐴 ↑m 𝐴)) |
| 12 | resmpo 7527 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ (𝐴 ↑m 𝐴) ∧ 𝐹 ⊆ (𝐴 ↑m 𝐴)) → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 13 | 12 | anidms 566 | . . . . . . . . 9 ⊢ (𝐹 ⊆ (𝐴 ↑m 𝐴) → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
| 14 | 11, 13 | syl 17 | . . . . . . . 8 ⊢ (𝐹 ⊆ 𝐵 → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
| 15 | eqid 2735 | . . . . . . . . . . 11 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
| 16 | eqid 2735 | . . . . . . . . . . 11 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 1, 15, 16 | symgplusg 19364 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) |
| 18 | 17 | eqcomi 2744 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) = (+g‘𝐺) |
| 19 | 18 | reseq1i 5962 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)) |
| 20 | 14, 19 | eqtr3di 2785 | . . . . . . 7 ⊢ (𝐹 ⊆ 𝐵 → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 21 | 20 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 22 | 6, 21 | eqtrd 2770 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 23 | 5, 22 | jca 511 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)))) |
| 24 | 23 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)))) |
| 25 | pgrpsubgsymg.c | . . . 4 ⊢ 𝐹 = (Base‘𝑃) | |
| 26 | 7, 25 | grpissubg 19129 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ Grp) → ((𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| 27 | 4, 24, 26 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → 𝐹 ∈ (SubGrp‘𝐺)) |
| 28 | 27 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 × cxp 5652 ↾ cres 5656 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8840 Basecbs 17228 +gcplusg 17271 Grpcgrp 18916 SubGrpcsubg 19103 SymGrpcsymg 19350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-tset 17290 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-efmnd 18847 df-grp 18919 df-minusg 18920 df-subg 19106 df-symg 19351 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |