| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgrpsubgsymg | Structured version Visualization version GIF version | ||
| Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.) |
| Ref | Expression |
|---|---|
| pgrpsubgsymgbi.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| pgrpsubgsymgbi.b | ⊢ 𝐵 = (Base‘𝐺) |
| pgrpsubgsymg.c | ⊢ 𝐹 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| pgrpsubgsymg | ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgrpsubgsymgbi.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | 1 | symggrp 19418 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 3 | simp1 1137 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝑃 ∈ Grp) | |
| 4 | 2, 3 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐺 ∈ Grp ∧ 𝑃 ∈ Grp)) |
| 5 | simp2 1138 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ⊆ 𝐵) | |
| 6 | simp3 1139 | . . . . . 6 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 7 | pgrpsubgsymgbi.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 1, 7 | symgbasmap 19394 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ 𝐵 → 𝑓 ∈ (𝐴 ↑m 𝐴)) |
| 9 | 8 | ssriv 3987 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐴 ↑m 𝐴) |
| 10 | sstr 3992 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ↑m 𝐴)) → 𝐹 ⊆ (𝐴 ↑m 𝐴)) | |
| 11 | 9, 10 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐵 → 𝐹 ⊆ (𝐴 ↑m 𝐴)) |
| 12 | resmpo 7553 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ (𝐴 ↑m 𝐴) ∧ 𝐹 ⊆ (𝐴 ↑m 𝐴)) → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 13 | 12 | anidms 566 | . . . . . . . . 9 ⊢ (𝐹 ⊆ (𝐴 ↑m 𝐴) → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
| 14 | 11, 13 | syl 17 | . . . . . . . 8 ⊢ (𝐹 ⊆ 𝐵 → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
| 15 | eqid 2737 | . . . . . . . . . . 11 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
| 16 | eqid 2737 | . . . . . . . . . . 11 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 1, 15, 16 | symgplusg 19400 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) |
| 18 | 17 | eqcomi 2746 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) = (+g‘𝐺) |
| 19 | 18 | reseq1i 5993 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)) |
| 20 | 14, 19 | eqtr3di 2792 | . . . . . . 7 ⊢ (𝐹 ⊆ 𝐵 → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 21 | 20 | 3ad2ant2 1135 | . . . . . 6 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 22 | 6, 21 | eqtrd 2777 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 23 | 5, 22 | jca 511 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)))) |
| 24 | 23 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)))) |
| 25 | pgrpsubgsymg.c | . . . 4 ⊢ 𝐹 = (Base‘𝑃) | |
| 26 | 7, 25 | grpissubg 19164 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ Grp) → ((𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| 27 | 4, 24, 26 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → 𝐹 ∈ (SubGrp‘𝐺)) |
| 28 | 27 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 × cxp 5683 ↾ cres 5687 ∘ ccom 5689 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ↑m cmap 8866 Basecbs 17247 +gcplusg 17297 Grpcgrp 18951 SubGrpcsubg 19138 SymGrpcsymg 19386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-tset 17316 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-efmnd 18882 df-grp 18954 df-minusg 18955 df-subg 19141 df-symg 19387 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |