![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pgrpsubgsymg | Structured version Visualization version GIF version |
Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.) |
Ref | Expression |
---|---|
pgrpsubgsymgbi.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
pgrpsubgsymgbi.b | ⊢ 𝐵 = (Base‘𝐺) |
pgrpsubgsymg.c | ⊢ 𝐹 = (Base‘𝑃) |
Ref | Expression |
---|---|
pgrpsubgsymg | ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgrpsubgsymgbi.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | 1 | symggrp 19442 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
3 | simp1 1136 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝑃 ∈ Grp) | |
4 | 2, 3 | anim12i 612 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐺 ∈ Grp ∧ 𝑃 ∈ Grp)) |
5 | simp2 1137 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ⊆ 𝐵) | |
6 | simp3 1138 | . . . . . 6 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
7 | pgrpsubgsymgbi.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
8 | 1, 7 | symgbasmap 19418 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ 𝐵 → 𝑓 ∈ (𝐴 ↑m 𝐴)) |
9 | 8 | ssriv 4012 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐴 ↑m 𝐴) |
10 | sstr 4017 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ↑m 𝐴)) → 𝐹 ⊆ (𝐴 ↑m 𝐴)) | |
11 | 9, 10 | mpan2 690 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐵 → 𝐹 ⊆ (𝐴 ↑m 𝐴)) |
12 | resmpo 7570 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ (𝐴 ↑m 𝐴) ∧ 𝐹 ⊆ (𝐴 ↑m 𝐴)) → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
13 | 12 | anidms 566 | . . . . . . . . 9 ⊢ (𝐹 ⊆ (𝐴 ↑m 𝐴) → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
14 | 11, 13 | syl 17 | . . . . . . . 8 ⊢ (𝐹 ⊆ 𝐵 → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
15 | eqid 2740 | . . . . . . . . . . 11 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
16 | eqid 2740 | . . . . . . . . . . 11 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
17 | 1, 15, 16 | symgplusg 19424 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) |
18 | 17 | eqcomi 2749 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) = (+g‘𝐺) |
19 | 18 | reseq1i 6005 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)) |
20 | 14, 19 | eqtr3di 2795 | . . . . . . 7 ⊢ (𝐹 ⊆ 𝐵 → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
21 | 20 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
22 | 6, 21 | eqtrd 2780 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
23 | 5, 22 | jca 511 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)))) |
24 | 23 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)))) |
25 | pgrpsubgsymg.c | . . . 4 ⊢ 𝐹 = (Base‘𝑃) | |
26 | 7, 25 | grpissubg 19186 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ Grp) → ((𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubGrp‘𝐺))) |
27 | 4, 24, 26 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → 𝐹 ∈ (SubGrp‘𝐺)) |
28 | 27 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 × cxp 5698 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ↑m cmap 8884 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 SubGrpcsubg 19160 SymGrpcsymg 19410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-tset 17330 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-efmnd 18904 df-grp 18976 df-minusg 18977 df-subg 19163 df-symg 19411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |