| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgrpsubgsymg | Structured version Visualization version GIF version | ||
| Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.) |
| Ref | Expression |
|---|---|
| pgrpsubgsymgbi.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| pgrpsubgsymgbi.b | ⊢ 𝐵 = (Base‘𝐺) |
| pgrpsubgsymg.c | ⊢ 𝐹 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| pgrpsubgsymg | ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgrpsubgsymgbi.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | 1 | symggrp 19318 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝑃 ∈ Grp) | |
| 4 | 2, 3 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐺 ∈ Grp ∧ 𝑃 ∈ Grp)) |
| 5 | simp2 1137 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ⊆ 𝐵) | |
| 6 | simp3 1138 | . . . . . 6 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 7 | pgrpsubgsymgbi.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 1, 7 | symgbasmap 19295 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ 𝐵 → 𝑓 ∈ (𝐴 ↑m 𝐴)) |
| 9 | 8 | ssriv 3933 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐴 ↑m 𝐴) |
| 10 | sstr 3938 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ↑m 𝐴)) → 𝐹 ⊆ (𝐴 ↑m 𝐴)) | |
| 11 | 9, 10 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐵 → 𝐹 ⊆ (𝐴 ↑m 𝐴)) |
| 12 | resmpo 7472 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ (𝐴 ↑m 𝐴) ∧ 𝐹 ⊆ (𝐴 ↑m 𝐴)) → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 13 | 12 | anidms 566 | . . . . . . . . 9 ⊢ (𝐹 ⊆ (𝐴 ↑m 𝐴) → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
| 14 | 11, 13 | syl 17 | . . . . . . . 8 ⊢ (𝐹 ⊆ 𝐵 → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
| 15 | eqid 2731 | . . . . . . . . . . 11 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
| 16 | eqid 2731 | . . . . . . . . . . 11 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 1, 15, 16 | symgplusg 19301 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) |
| 18 | 17 | eqcomi 2740 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) = (+g‘𝐺) |
| 19 | 18 | reseq1i 5929 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)) |
| 20 | 14, 19 | eqtr3di 2781 | . . . . . . 7 ⊢ (𝐹 ⊆ 𝐵 → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 21 | 20 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 22 | 6, 21 | eqtrd 2766 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 23 | 5, 22 | jca 511 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)))) |
| 24 | 23 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)))) |
| 25 | pgrpsubgsymg.c | . . . 4 ⊢ 𝐹 = (Base‘𝑃) | |
| 26 | 7, 25 | grpissubg 19065 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ Grp) → ((𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| 27 | 4, 24, 26 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → 𝐹 ∈ (SubGrp‘𝐺)) |
| 28 | 27 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 × cxp 5617 ↾ cres 5621 ∘ ccom 5623 ‘cfv 6487 (class class class)co 7352 ∈ cmpo 7354 ↑m cmap 8756 Basecbs 17126 +gcplusg 17167 Grpcgrp 18852 SubGrpcsubg 19039 SymGrpcsymg 19287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-tset 17186 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-efmnd 18783 df-grp 18855 df-minusg 18856 df-subg 19042 df-symg 19288 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |