| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgrpsubgsymg | Structured version Visualization version GIF version | ||
| Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.) |
| Ref | Expression |
|---|---|
| pgrpsubgsymgbi.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| pgrpsubgsymgbi.b | ⊢ 𝐵 = (Base‘𝐺) |
| pgrpsubgsymg.c | ⊢ 𝐹 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| pgrpsubgsymg | ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgrpsubgsymgbi.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | 1 | symggrp 19305 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝑃 ∈ Grp) | |
| 4 | 2, 3 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐺 ∈ Grp ∧ 𝑃 ∈ Grp)) |
| 5 | simp2 1137 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ⊆ 𝐵) | |
| 6 | simp3 1138 | . . . . . 6 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 7 | pgrpsubgsymgbi.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | 1, 7 | symgbasmap 19282 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ 𝐵 → 𝑓 ∈ (𝐴 ↑m 𝐴)) |
| 9 | 8 | ssriv 3936 | . . . . . . . . . 10 ⊢ 𝐵 ⊆ (𝐴 ↑m 𝐴) |
| 10 | sstr 3941 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ (𝐴 ↑m 𝐴)) → 𝐹 ⊆ (𝐴 ↑m 𝐴)) | |
| 11 | 9, 10 | mpan2 691 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐵 → 𝐹 ⊆ (𝐴 ↑m 𝐴)) |
| 12 | resmpo 7461 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ (𝐴 ↑m 𝐴) ∧ 𝐹 ⊆ (𝐴 ↑m 𝐴)) → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 13 | 12 | anidms 566 | . . . . . . . . 9 ⊢ (𝐹 ⊆ (𝐴 ↑m 𝐴) → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
| 14 | 11, 13 | syl 17 | . . . . . . . 8 ⊢ (𝐹 ⊆ 𝐵 → ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
| 15 | eqid 2730 | . . . . . . . . . . 11 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
| 16 | eqid 2730 | . . . . . . . . . . 11 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 1, 15, 16 | symgplusg 19288 | . . . . . . . . . 10 ⊢ (+g‘𝐺) = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) |
| 18 | 17 | eqcomi 2739 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) = (+g‘𝐺) |
| 19 | 18 | reseq1i 5921 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)) |
| 20 | 14, 19 | eqtr3di 2780 | . . . . . . 7 ⊢ (𝐹 ⊆ 𝐵 → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 21 | 20 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 22 | 6, 21 | eqtrd 2765 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) |
| 23 | 5, 22 | jca 511 | . . . 4 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)))) |
| 24 | 23 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹)))) |
| 25 | pgrpsubgsymg.c | . . . 4 ⊢ 𝐹 = (Base‘𝑃) | |
| 26 | 7, 25 | grpissubg 19051 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ Grp) → ((𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = ((+g‘𝐺) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| 27 | 4, 24, 26 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → 𝐹 ∈ (SubGrp‘𝐺)) |
| 28 | 27 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → ((𝑃 ∈ Grp ∧ 𝐹 ⊆ 𝐵 ∧ (+g‘𝑃) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubGrp‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 × cxp 5612 ↾ cres 5616 ∘ ccom 5618 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 ↑m cmap 8745 Basecbs 17112 +gcplusg 17153 Grpcgrp 18838 SubGrpcsubg 19025 SymGrpcsymg 19274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-tset 17172 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-efmnd 18769 df-grp 18841 df-minusg 18842 df-subg 19028 df-symg 19275 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |