MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgrpsubgsymg Structured version   Visualization version   GIF version

Theorem pgrpsubgsymg 19339
Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.) (Revised by AV, 30-Mar-2024.)
Hypotheses
Ref Expression
pgrpsubgsymgbi.g 𝐺 = (SymGrp‘𝐴)
pgrpsubgsymgbi.b 𝐵 = (Base‘𝐺)
pgrpsubgsymg.c 𝐹 = (Base‘𝑃)
Assertion
Ref Expression
pgrpsubgsymg (𝐴𝑉 → ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubGrp‘𝐺)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑓,𝐹,𝑔
Allowed substitution hints:   𝑃(𝑓,𝑔)   𝐺(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem pgrpsubgsymg
StepHypRef Expression
1 pgrpsubgsymgbi.g . . . . 5 𝐺 = (SymGrp‘𝐴)
21symggrp 19330 . . . 4 (𝐴𝑉𝐺 ∈ Grp)
3 simp1 1136 . . . 4 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝑃 ∈ Grp)
42, 3anim12i 613 . . 3 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐺 ∈ Grp ∧ 𝑃 ∈ Grp))
5 simp2 1137 . . . . 5 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹𝐵)
6 simp3 1138 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
7 pgrpsubgsymgbi.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
81, 7symgbasmap 19307 . . . . . . . . . . 11 (𝑓𝐵𝑓 ∈ (𝐴m 𝐴))
98ssriv 3950 . . . . . . . . . 10 𝐵 ⊆ (𝐴m 𝐴)
10 sstr 3955 . . . . . . . . . 10 ((𝐹𝐵𝐵 ⊆ (𝐴m 𝐴)) → 𝐹 ⊆ (𝐴m 𝐴))
119, 10mpan2 691 . . . . . . . . 9 (𝐹𝐵𝐹 ⊆ (𝐴m 𝐴))
12 resmpo 7509 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴m 𝐴) ∧ 𝐹 ⊆ (𝐴m 𝐴)) → ((𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
1312anidms 566 . . . . . . . . 9 (𝐹 ⊆ (𝐴m 𝐴) → ((𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
1411, 13syl 17 . . . . . . . 8 (𝐹𝐵 → ((𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
15 eqid 2729 . . . . . . . . . . 11 (𝐴m 𝐴) = (𝐴m 𝐴)
16 eqid 2729 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
171, 15, 16symgplusg 19313 . . . . . . . . . 10 (+g𝐺) = (𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔))
1817eqcomi 2738 . . . . . . . . 9 (𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)) = (+g𝐺)
1918reseq1i 5946 . . . . . . . 8 ((𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = ((+g𝐺) ↾ (𝐹 × 𝐹))
2014, 19eqtr3di 2779 . . . . . . 7 (𝐹𝐵 → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
21203ad2ant2 1134 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
226, 21eqtrd 2764 . . . . 5 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
235, 22jca 511 . . . 4 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))))
2423adantl 481 . . 3 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))))
25 pgrpsubgsymg.c . . . 4 𝐹 = (Base‘𝑃)
267, 25grpissubg 19078 . . 3 ((𝐺 ∈ Grp ∧ 𝑃 ∈ Grp) → ((𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubGrp‘𝐺)))
274, 24, 26sylc 65 . 2 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → 𝐹 ∈ (SubGrp‘𝐺))
2827ex 412 1 (𝐴𝑉 → ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubGrp‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   × cxp 5636  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  Basecbs 17179  +gcplusg 17220  Grpcgrp 18865  SubGrpcsubg 19052  SymGrpcsymg 19299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-subg 19055  df-symg 19300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator