![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprpiece1res1 | Structured version Visualization version GIF version |
Description: Restriction to the first part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
oprpiece1.1 | ⊢ 𝐴 ∈ ℝ |
oprpiece1.2 | ⊢ 𝐵 ∈ ℝ |
oprpiece1.3 | ⊢ 𝐴 ≤ 𝐵 |
oprpiece1.4 | ⊢ 𝑅 ∈ V |
oprpiece1.5 | ⊢ 𝑆 ∈ V |
oprpiece1.6 | ⊢ 𝐾 ∈ (𝐴[,]𝐵) |
oprpiece1.7 | ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
oprpiece1.8 | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) |
Ref | Expression |
---|---|
oprpiece1res1 | ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprpiece1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
2 | 1 | rexri 10548 | . . . . 5 ⊢ 𝐴 ∈ ℝ* |
3 | oprpiece1.2 | . . . . . 6 ⊢ 𝐵 ∈ ℝ | |
4 | 3 | rexri 10548 | . . . . 5 ⊢ 𝐵 ∈ ℝ* |
5 | oprpiece1.3 | . . . . 5 ⊢ 𝐴 ≤ 𝐵 | |
6 | lbicc2 12702 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
7 | 2, 4, 5, 6 | mp3an 1453 | . . . 4 ⊢ 𝐴 ∈ (𝐴[,]𝐵) |
8 | oprpiece1.6 | . . . 4 ⊢ 𝐾 ∈ (𝐴[,]𝐵) | |
9 | iccss2 12657 | . . . 4 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐾 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵)) | |
10 | 7, 8, 9 | mp2an 688 | . . 3 ⊢ (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) |
11 | ssid 3912 | . . 3 ⊢ 𝐶 ⊆ 𝐶 | |
12 | resmpo 7131 | . . 3 ⊢ (((𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) ∧ 𝐶 ⊆ 𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆))) | |
13 | 10, 11, 12 | mp2an 688 | . 2 ⊢ ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
14 | oprpiece1.7 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) | |
15 | 14 | reseq1i 5733 | . 2 ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) |
16 | oprpiece1.8 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) | |
17 | eliccxr 12673 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ*) | |
18 | 8, 17 | ax-mp 5 | . . . . . . 7 ⊢ 𝐾 ∈ ℝ* |
19 | iccleub 12642 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐾 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐾)) → 𝑥 ≤ 𝐾) | |
20 | 2, 18, 19 | mp3an12 1443 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴[,]𝐾) → 𝑥 ≤ 𝐾) |
21 | 20 | iftrued 4391 | . . . . 5 ⊢ (𝑥 ∈ (𝐴[,]𝐾) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑅) |
22 | 21 | adantr 481 | . . . 4 ⊢ ((𝑥 ∈ (𝐴[,]𝐾) ∧ 𝑦 ∈ 𝐶) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑅) |
23 | 22 | mpoeq3ia 7093 | . . 3 ⊢ (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) |
24 | 16, 23 | eqtr4i 2821 | . 2 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
25 | 13, 15, 24 | 3eqtr4i 2828 | 1 ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2080 Vcvv 3436 ⊆ wss 3861 ifcif 4383 class class class wbr 4964 × cxp 5444 ↾ cres 5448 (class class class)co 7019 ∈ cmpo 7021 ℝcr 10385 ℝ*cxr 10523 ≤ cle 10525 [,]cicc 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-cnex 10442 ax-resscn 10443 ax-pre-lttri 10460 ax-pre-lttrn 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-id 5351 df-po 5365 df-so 5366 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-1st 7548 df-2nd 7549 df-er 8142 df-en 8361 df-dom 8362 df-sdom 8363 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-icc 12595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |