| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oprpiece1res1 | Structured version Visualization version GIF version | ||
| Description: Restriction to the first part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| oprpiece1.1 | ⊢ 𝐴 ∈ ℝ |
| oprpiece1.2 | ⊢ 𝐵 ∈ ℝ |
| oprpiece1.3 | ⊢ 𝐴 ≤ 𝐵 |
| oprpiece1.4 | ⊢ 𝑅 ∈ V |
| oprpiece1.5 | ⊢ 𝑆 ∈ V |
| oprpiece1.6 | ⊢ 𝐾 ∈ (𝐴[,]𝐵) |
| oprpiece1.7 | ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
| oprpiece1.8 | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) |
| Ref | Expression |
|---|---|
| oprpiece1res1 | ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprpiece1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
| 2 | 1 | rexri 11208 | . . . . 5 ⊢ 𝐴 ∈ ℝ* |
| 3 | oprpiece1.2 | . . . . . 6 ⊢ 𝐵 ∈ ℝ | |
| 4 | 3 | rexri 11208 | . . . . 5 ⊢ 𝐵 ∈ ℝ* |
| 5 | oprpiece1.3 | . . . . 5 ⊢ 𝐴 ≤ 𝐵 | |
| 6 | lbicc2 13401 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
| 7 | 2, 4, 5, 6 | mp3an 1463 | . . . 4 ⊢ 𝐴 ∈ (𝐴[,]𝐵) |
| 8 | oprpiece1.6 | . . . 4 ⊢ 𝐾 ∈ (𝐴[,]𝐵) | |
| 9 | iccss2 13354 | . . . 4 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐾 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵)) | |
| 10 | 7, 8, 9 | mp2an 692 | . . 3 ⊢ (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) |
| 11 | ssid 3966 | . . 3 ⊢ 𝐶 ⊆ 𝐶 | |
| 12 | resmpo 7489 | . . 3 ⊢ (((𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) ∧ 𝐶 ⊆ 𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆))) | |
| 13 | 10, 11, 12 | mp2an 692 | . 2 ⊢ ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
| 14 | oprpiece1.7 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) | |
| 15 | 14 | reseq1i 5935 | . 2 ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) |
| 16 | oprpiece1.8 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) | |
| 17 | eliccxr 13372 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ*) | |
| 18 | 8, 17 | ax-mp 5 | . . . . . . 7 ⊢ 𝐾 ∈ ℝ* |
| 19 | iccleub 13338 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐾 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐾)) → 𝑥 ≤ 𝐾) | |
| 20 | 2, 18, 19 | mp3an12 1453 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴[,]𝐾) → 𝑥 ≤ 𝐾) |
| 21 | 20 | iftrued 4492 | . . . . 5 ⊢ (𝑥 ∈ (𝐴[,]𝐾) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑅) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ (𝐴[,]𝐾) ∧ 𝑦 ∈ 𝐶) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑅) |
| 23 | 22 | mpoeq3ia 7447 | . . 3 ⊢ (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) |
| 24 | 16, 23 | eqtr4i 2755 | . 2 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
| 25 | 13, 15, 24 | 3eqtr4i 2762 | 1 ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ifcif 4484 class class class wbr 5102 × cxp 5629 ↾ cres 5633 (class class class)co 7369 ∈ cmpo 7371 ℝcr 11043 ℝ*cxr 11183 ≤ cle 11185 [,]cicc 13285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-icc 13289 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |