Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprpiece1res1 Structured version   Visualization version   GIF version

Theorem oprpiece1res1 23665
 Description: Restriction to the first part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
oprpiece1.1 𝐴 ∈ ℝ
oprpiece1.2 𝐵 ∈ ℝ
oprpiece1.3 𝐴𝐵
oprpiece1.4 𝑅 ∈ V
oprpiece1.5 𝑆 ∈ V
oprpiece1.6 𝐾 ∈ (𝐴[,]𝐵)
oprpiece1.7 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
oprpiece1.8 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶𝑅)
Assertion
Ref Expression
oprpiece1res1 (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprpiece1res1
StepHypRef Expression
1 oprpiece1.1 . . . . . 6 𝐴 ∈ ℝ
21rexri 10750 . . . . 5 𝐴 ∈ ℝ*
3 oprpiece1.2 . . . . . 6 𝐵 ∈ ℝ
43rexri 10750 . . . . 5 𝐵 ∈ ℝ*
5 oprpiece1.3 . . . . 5 𝐴𝐵
6 lbicc2 12909 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
72, 4, 5, 6mp3an 1458 . . . 4 𝐴 ∈ (𝐴[,]𝐵)
8 oprpiece1.6 . . . 4 𝐾 ∈ (𝐴[,]𝐵)
9 iccss2 12863 . . . 4 ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐾 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵))
107, 8, 9mp2an 691 . . 3 (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵)
11 ssid 3916 . . 3 𝐶𝐶
12 resmpo 7272 . . 3 (((𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) ∧ 𝐶𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)))
1310, 11, 12mp2an 691 . 2 ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
14 oprpiece1.7 . . 3 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
1514reseq1i 5824 . 2 (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶))
16 oprpiece1.8 . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶𝑅)
17 eliccxr 12880 . . . . . . . 8 (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ*)
188, 17ax-mp 5 . . . . . . 7 𝐾 ∈ ℝ*
19 iccleub 12847 . . . . . . 7 ((𝐴 ∈ ℝ*𝐾 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐾)) → 𝑥𝐾)
202, 18, 19mp3an12 1448 . . . . . 6 (𝑥 ∈ (𝐴[,]𝐾) → 𝑥𝐾)
2120iftrued 4431 . . . . 5 (𝑥 ∈ (𝐴[,]𝐾) → if(𝑥𝐾, 𝑅, 𝑆) = 𝑅)
2221adantr 484 . . . 4 ((𝑥 ∈ (𝐴[,]𝐾) ∧ 𝑦𝐶) → if(𝑥𝐾, 𝑅, 𝑆) = 𝑅)
2322mpoeq3ia 7232 . . 3 (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶𝑅)
2416, 23eqtr4i 2784 . 2 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
2513, 15, 243eqtr4i 2791 1 (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2111  Vcvv 3409   ⊆ wss 3860  ifcif 4423   class class class wbr 5036   × cxp 5526   ↾ cres 5530  (class class class)co 7156   ∈ cmpo 7158  ℝcr 10587  ℝ*cxr 10725   ≤ cle 10727  [,]cicc 12795 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-pre-lttri 10662  ax-pre-lttrn 10663 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-icc 12799 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator