Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oprpiece1res1 | Structured version Visualization version GIF version |
Description: Restriction to the first part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
oprpiece1.1 | ⊢ 𝐴 ∈ ℝ |
oprpiece1.2 | ⊢ 𝐵 ∈ ℝ |
oprpiece1.3 | ⊢ 𝐴 ≤ 𝐵 |
oprpiece1.4 | ⊢ 𝑅 ∈ V |
oprpiece1.5 | ⊢ 𝑆 ∈ V |
oprpiece1.6 | ⊢ 𝐾 ∈ (𝐴[,]𝐵) |
oprpiece1.7 | ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
oprpiece1.8 | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) |
Ref | Expression |
---|---|
oprpiece1res1 | ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprpiece1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
2 | 1 | rexri 10964 | . . . . 5 ⊢ 𝐴 ∈ ℝ* |
3 | oprpiece1.2 | . . . . . 6 ⊢ 𝐵 ∈ ℝ | |
4 | 3 | rexri 10964 | . . . . 5 ⊢ 𝐵 ∈ ℝ* |
5 | oprpiece1.3 | . . . . 5 ⊢ 𝐴 ≤ 𝐵 | |
6 | lbicc2 13125 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
7 | 2, 4, 5, 6 | mp3an 1459 | . . . 4 ⊢ 𝐴 ∈ (𝐴[,]𝐵) |
8 | oprpiece1.6 | . . . 4 ⊢ 𝐾 ∈ (𝐴[,]𝐵) | |
9 | iccss2 13079 | . . . 4 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐾 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵)) | |
10 | 7, 8, 9 | mp2an 688 | . . 3 ⊢ (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) |
11 | ssid 3939 | . . 3 ⊢ 𝐶 ⊆ 𝐶 | |
12 | resmpo 7372 | . . 3 ⊢ (((𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) ∧ 𝐶 ⊆ 𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆))) | |
13 | 10, 11, 12 | mp2an 688 | . 2 ⊢ ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
14 | oprpiece1.7 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) | |
15 | 14 | reseq1i 5876 | . 2 ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) |
16 | oprpiece1.8 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) | |
17 | eliccxr 13096 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ*) | |
18 | 8, 17 | ax-mp 5 | . . . . . . 7 ⊢ 𝐾 ∈ ℝ* |
19 | iccleub 13063 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐾 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐾)) → 𝑥 ≤ 𝐾) | |
20 | 2, 18, 19 | mp3an12 1449 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴[,]𝐾) → 𝑥 ≤ 𝐾) |
21 | 20 | iftrued 4464 | . . . . 5 ⊢ (𝑥 ∈ (𝐴[,]𝐾) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑅) |
22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ (𝐴[,]𝐾) ∧ 𝑦 ∈ 𝐶) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑅) |
23 | 22 | mpoeq3ia 7331 | . . 3 ⊢ (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) |
24 | 16, 23 | eqtr4i 2769 | . 2 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
25 | 13, 15, 24 | 3eqtr4i 2776 | 1 ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ifcif 4456 class class class wbr 5070 × cxp 5578 ↾ cres 5582 (class class class)co 7255 ∈ cmpo 7257 ℝcr 10801 ℝ*cxr 10939 ≤ cle 10941 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-icc 13015 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |