![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprpiece1res1 | Structured version Visualization version GIF version |
Description: Restriction to the first part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
oprpiece1.1 | ⊢ 𝐴 ∈ ℝ |
oprpiece1.2 | ⊢ 𝐵 ∈ ℝ |
oprpiece1.3 | ⊢ 𝐴 ≤ 𝐵 |
oprpiece1.4 | ⊢ 𝑅 ∈ V |
oprpiece1.5 | ⊢ 𝑆 ∈ V |
oprpiece1.6 | ⊢ 𝐾 ∈ (𝐴[,]𝐵) |
oprpiece1.7 | ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
oprpiece1.8 | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) |
Ref | Expression |
---|---|
oprpiece1res1 | ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprpiece1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
2 | 1 | rexri 11348 | . . . . 5 ⊢ 𝐴 ∈ ℝ* |
3 | oprpiece1.2 | . . . . . 6 ⊢ 𝐵 ∈ ℝ | |
4 | 3 | rexri 11348 | . . . . 5 ⊢ 𝐵 ∈ ℝ* |
5 | oprpiece1.3 | . . . . 5 ⊢ 𝐴 ≤ 𝐵 | |
6 | lbicc2 13524 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
7 | 2, 4, 5, 6 | mp3an 1461 | . . . 4 ⊢ 𝐴 ∈ (𝐴[,]𝐵) |
8 | oprpiece1.6 | . . . 4 ⊢ 𝐾 ∈ (𝐴[,]𝐵) | |
9 | iccss2 13478 | . . . 4 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐾 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵)) | |
10 | 7, 8, 9 | mp2an 691 | . . 3 ⊢ (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) |
11 | ssid 4031 | . . 3 ⊢ 𝐶 ⊆ 𝐶 | |
12 | resmpo 7570 | . . 3 ⊢ (((𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) ∧ 𝐶 ⊆ 𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆))) | |
13 | 10, 11, 12 | mp2an 691 | . 2 ⊢ ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
14 | oprpiece1.7 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) | |
15 | 14 | reseq1i 6005 | . 2 ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) |
16 | oprpiece1.8 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) | |
17 | eliccxr 13495 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ*) | |
18 | 8, 17 | ax-mp 5 | . . . . . . 7 ⊢ 𝐾 ∈ ℝ* |
19 | iccleub 13462 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐾 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐾)) → 𝑥 ≤ 𝐾) | |
20 | 2, 18, 19 | mp3an12 1451 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴[,]𝐾) → 𝑥 ≤ 𝐾) |
21 | 20 | iftrued 4556 | . . . . 5 ⊢ (𝑥 ∈ (𝐴[,]𝐾) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑅) |
22 | 21 | adantr 480 | . . . 4 ⊢ ((𝑥 ∈ (𝐴[,]𝐾) ∧ 𝑦 ∈ 𝐶) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑅) |
23 | 22 | mpoeq3ia 7528 | . . 3 ⊢ (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) |
24 | 16, 23 | eqtr4i 2771 | . 2 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
25 | 13, 15, 24 | 3eqtr4i 2778 | 1 ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ifcif 4548 class class class wbr 5166 × cxp 5698 ↾ cres 5702 (class class class)co 7448 ∈ cmpo 7450 ℝcr 11183 ℝ*cxr 11323 ≤ cle 11325 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |