Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oprpiece1res1 | Structured version Visualization version GIF version |
Description: Restriction to the first part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
oprpiece1.1 | ⊢ 𝐴 ∈ ℝ |
oprpiece1.2 | ⊢ 𝐵 ∈ ℝ |
oprpiece1.3 | ⊢ 𝐴 ≤ 𝐵 |
oprpiece1.4 | ⊢ 𝑅 ∈ V |
oprpiece1.5 | ⊢ 𝑆 ∈ V |
oprpiece1.6 | ⊢ 𝐾 ∈ (𝐴[,]𝐵) |
oprpiece1.7 | ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
oprpiece1.8 | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) |
Ref | Expression |
---|---|
oprpiece1res1 | ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprpiece1.1 | . . . . . 6 ⊢ 𝐴 ∈ ℝ | |
2 | 1 | rexri 10750 | . . . . 5 ⊢ 𝐴 ∈ ℝ* |
3 | oprpiece1.2 | . . . . . 6 ⊢ 𝐵 ∈ ℝ | |
4 | 3 | rexri 10750 | . . . . 5 ⊢ 𝐵 ∈ ℝ* |
5 | oprpiece1.3 | . . . . 5 ⊢ 𝐴 ≤ 𝐵 | |
6 | lbicc2 12909 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
7 | 2, 4, 5, 6 | mp3an 1458 | . . . 4 ⊢ 𝐴 ∈ (𝐴[,]𝐵) |
8 | oprpiece1.6 | . . . 4 ⊢ 𝐾 ∈ (𝐴[,]𝐵) | |
9 | iccss2 12863 | . . . 4 ⊢ ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐾 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵)) | |
10 | 7, 8, 9 | mp2an 691 | . . 3 ⊢ (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) |
11 | ssid 3916 | . . 3 ⊢ 𝐶 ⊆ 𝐶 | |
12 | resmpo 7272 | . . 3 ⊢ (((𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) ∧ 𝐶 ⊆ 𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆))) | |
13 | 10, 11, 12 | mp2an 691 | . 2 ⊢ ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
14 | oprpiece1.7 | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) | |
15 | 14 | reseq1i 5824 | . 2 ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) |
16 | oprpiece1.8 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) | |
17 | eliccxr 12880 | . . . . . . . 8 ⊢ (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ*) | |
18 | 8, 17 | ax-mp 5 | . . . . . . 7 ⊢ 𝐾 ∈ ℝ* |
19 | iccleub 12847 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐾 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,]𝐾)) → 𝑥 ≤ 𝐾) | |
20 | 2, 18, 19 | mp3an12 1448 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴[,]𝐾) → 𝑥 ≤ 𝐾) |
21 | 20 | iftrued 4431 | . . . . 5 ⊢ (𝑥 ∈ (𝐴[,]𝐾) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑅) |
22 | 21 | adantr 484 | . . . 4 ⊢ ((𝑥 ∈ (𝐴[,]𝐾) ∧ 𝑦 ∈ 𝐶) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑅) |
23 | 22 | mpoeq3ia 7232 | . . 3 ⊢ (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ 𝑅) |
24 | 16, 23 | eqtr4i 2784 | . 2 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
25 | 13, 15, 24 | 3eqtr4i 2791 | 1 ⊢ (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 ifcif 4423 class class class wbr 5036 × cxp 5526 ↾ cres 5530 (class class class)co 7156 ∈ cmpo 7158 ℝcr 10587 ℝ*cxr 10725 ≤ cle 10727 [,]cicc 12795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-pre-lttri 10662 ax-pre-lttrn 10663 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-icc 12799 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |