Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > submatres | Structured version Visualization version GIF version |
Description: Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
Ref | Expression |
---|---|
submat1n.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
submat1n.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
submatres | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submat1n.a | . . 3 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
2 | submat1n.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | submat1n 31657 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁)) |
4 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
5 | nnuz 12550 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
6 | 5 | eleq2i 2830 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
7 | 6 | biimpi 215 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
8 | eluzfz2 13193 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘1) → 𝑁 ∈ (1...𝑁)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁)) |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ (1...𝑁)) |
11 | eqid 2738 | . . . 4 ⊢ ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅) | |
12 | 1, 11, 2 | submaval 21638 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗))) |
13 | 4, 10, 10, 12 | syl3anc 1369 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗))) |
14 | fzdif2 31014 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) | |
15 | 7, 14 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
16 | difss 4062 | . . . . . 6 ⊢ ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁) | |
17 | 15, 16 | eqsstrrdi 3972 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
19 | resmpo 7372 | . . . 4 ⊢ (((1...(𝑁 − 1)) ⊆ (1...𝑁) ∧ (1...(𝑁 − 1)) ⊆ (1...𝑁)) → ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) | |
20 | 18, 18, 19 | syl2anc 583 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) |
21 | 1, 2 | matmpo 31655 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗))) |
22 | 21 | reseq1d 5879 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
23 | 22 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
24 | 15 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
25 | eqidd 2739 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗)) | |
26 | 24, 24, 25 | mpoeq123dv 7328 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) |
27 | 20, 23, 26 | 3eqtr4rd 2789 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
28 | 3, 13, 27 | 3eqtrd 2782 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 × cxp 5578 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1c1 10803 − cmin 11135 ℕcn 11903 ℤ≥cuz 12511 ...cfz 13168 Basecbs 16840 Mat cmat 21464 subMat csubma 21633 subMat1csmat 31645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-mat 21465 df-subma 21634 df-smat 31646 |
This theorem is referenced by: madjusmdetlem3 31681 |
Copyright terms: Public domain | W3C validator |