| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submatres | Structured version Visualization version GIF version | ||
| Description: Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
| Ref | Expression |
|---|---|
| submat1n.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
| submat1n.b | ⊢ 𝐵 = (Base‘𝐴) |
| Ref | Expression |
|---|---|
| submatres | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submat1n.a | . . 3 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
| 2 | submat1n.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | 1, 2 | submat1n 33774 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁)) |
| 4 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 5 | nnuz 12796 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 6 | 5 | eleq2i 2820 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
| 7 | 6 | biimpi 216 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
| 8 | eluzfz2 13453 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘1) → 𝑁 ∈ (1...𝑁)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁)) |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ (1...𝑁)) |
| 11 | eqid 2729 | . . . 4 ⊢ ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅) | |
| 12 | 1, 11, 2 | submaval 22484 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗))) |
| 13 | 4, 10, 10, 12 | syl3anc 1373 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗))) |
| 14 | fzdif2 32746 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) | |
| 15 | 7, 14 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
| 16 | difss 4089 | . . . . . 6 ⊢ ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁) | |
| 17 | 15, 16 | eqsstrrdi 3983 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 19 | resmpo 7473 | . . . 4 ⊢ (((1...(𝑁 − 1)) ⊆ (1...𝑁) ∧ (1...(𝑁 − 1)) ⊆ (1...𝑁)) → ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) | |
| 20 | 18, 18, 19 | syl2anc 584 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) |
| 21 | 1, 2 | matmpo 33772 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗))) |
| 22 | 21 | reseq1d 5933 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
| 24 | 15 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
| 25 | eqidd 2730 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗)) | |
| 26 | 24, 24, 25 | mpoeq123dv 7428 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) |
| 27 | 20, 23, 26 | 3eqtr4rd 2775 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
| 28 | 3, 13, 27 | 3eqtrd 2768 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ⊆ wss 3905 {csn 4579 × cxp 5621 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1c1 11029 − cmin 11365 ℕcn 12146 ℤ≥cuz 12753 ...cfz 13428 Basecbs 17138 Mat cmat 22310 subMat csubma 22479 subMat1csmat 33762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-prds 17369 df-pws 17371 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-mat 22311 df-subma 22480 df-smat 33763 |
| This theorem is referenced by: madjusmdetlem3 33798 |
| Copyright terms: Public domain | W3C validator |