![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > submatres | Structured version Visualization version GIF version |
Description: Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
Ref | Expression |
---|---|
submat1n.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
submat1n.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
submatres | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submat1n.a | . . 3 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
2 | submat1n.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | submat1n 33766 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁)) |
4 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
5 | nnuz 12919 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
6 | 5 | eleq2i 2831 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
7 | 6 | biimpi 216 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
8 | eluzfz2 13569 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘1) → 𝑁 ∈ (1...𝑁)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁)) |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ (1...𝑁)) |
11 | eqid 2735 | . . . 4 ⊢ ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅) | |
12 | 1, 11, 2 | submaval 22603 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗))) |
13 | 4, 10, 10, 12 | syl3anc 1370 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗))) |
14 | fzdif2 32799 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) | |
15 | 7, 14 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
16 | difss 4146 | . . . . . 6 ⊢ ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁) | |
17 | 15, 16 | eqsstrrdi 4051 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
19 | resmpo 7553 | . . . 4 ⊢ (((1...(𝑁 − 1)) ⊆ (1...𝑁) ∧ (1...(𝑁 − 1)) ⊆ (1...𝑁)) → ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) | |
20 | 18, 18, 19 | syl2anc 584 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) |
21 | 1, 2 | matmpo 33764 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗))) |
22 | 21 | reseq1d 5999 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
23 | 22 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
24 | 15 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
25 | eqidd 2736 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗)) | |
26 | 24, 24, 25 | mpoeq123dv 7508 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) |
27 | 20, 23, 26 | 3eqtr4rd 2786 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
28 | 3, 13, 27 | 3eqtrd 2779 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ⊆ wss 3963 {csn 4631 × cxp 5687 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 1c1 11154 − cmin 11490 ℕcn 12264 ℤ≥cuz 12876 ...cfz 13544 Basecbs 17245 Mat cmat 22427 subMat csubma 22598 subMat1csmat 33754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-prds 17494 df-pws 17496 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 df-mat 22428 df-subma 22599 df-smat 33755 |
This theorem is referenced by: madjusmdetlem3 33790 |
Copyright terms: Public domain | W3C validator |