![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > submatres | Structured version Visualization version GIF version |
Description: Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
Ref | Expression |
---|---|
submat1n.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
submat1n.b | ⊢ 𝐵 = (Base‘𝐴) |
Ref | Expression |
---|---|
submatres | ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submat1n.a | . . 3 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
2 | submat1n.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | submat1n 33537 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁)) |
4 | simpr 483 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
5 | nnuz 12898 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
6 | 5 | eleq2i 2817 | . . . . . 6 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) |
7 | 6 | biimpi 215 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
8 | eluzfz2 13544 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘1) → 𝑁 ∈ (1...𝑁)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁)) |
10 | 9 | adantr 479 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ (1...𝑁)) |
11 | eqid 2725 | . . . 4 ⊢ ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅) | |
12 | 1, 11, 2 | submaval 22527 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗))) |
13 | 4, 10, 10, 12 | syl3anc 1368 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗))) |
14 | fzdif2 32641 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) | |
15 | 7, 14 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
16 | difss 4128 | . . . . . 6 ⊢ ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁) | |
17 | 15, 16 | eqsstrrdi 4032 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
18 | 17 | adantr 479 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
19 | resmpo 7540 | . . . 4 ⊢ (((1...(𝑁 − 1)) ⊆ (1...𝑁) ∧ (1...(𝑁 − 1)) ⊆ (1...𝑁)) → ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) | |
20 | 18, 18, 19 | syl2anc 582 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) |
21 | 1, 2 | matmpo 33535 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗))) |
22 | 21 | reseq1d 5984 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
23 | 22 | adantl 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
24 | 15 | adantr 479 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
25 | eqidd 2726 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗)) | |
26 | 24, 24, 25 | mpoeq123dv 7495 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗))) |
27 | 20, 23, 26 | 3eqtr4rd 2776 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
28 | 3, 13, 27 | 3eqtrd 2769 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 ⊆ wss 3944 {csn 4630 × cxp 5676 ↾ cres 5680 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 1c1 11141 − cmin 11476 ℕcn 12245 ℤ≥cuz 12855 ...cfz 13519 Basecbs 17183 Mat cmat 22351 subMat csubma 22522 subMat1csmat 33525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-fzo 13663 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-0g 17426 df-prds 17432 df-pws 17434 df-sra 21070 df-rgmod 21071 df-dsmm 21683 df-frlm 21698 df-mat 22352 df-subma 22523 df-smat 33526 |
This theorem is referenced by: madjusmdetlem3 33561 |
Copyright terms: Public domain | W3C validator |