Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submatres Structured version   Visualization version   GIF version

Theorem submatres 33538
Description: Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.)
Hypotheses
Ref Expression
submat1n.a 𝐴 = ((1...𝑁) Mat 𝑅)
submat1n.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submatres ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))

Proof of Theorem submatres
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submat1n.a . . 3 𝐴 = ((1...𝑁) Mat 𝑅)
2 submat1n.b . . 3 𝐵 = (Base‘𝐴)
31, 2submat1n 33537 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁))
4 simpr 483 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑀𝐵)
5 nnuz 12898 . . . . . . 7 ℕ = (ℤ‘1)
65eleq2i 2817 . . . . . 6 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
76biimpi 215 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
8 eluzfz2 13544 . . . . 5 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
97, 8syl 17 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
109adantr 479 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → 𝑁 ∈ (1...𝑁))
11 eqid 2725 . . . 4 ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅)
121, 11, 2submaval 22527 . . 3 ((𝑀𝐵𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)))
134, 10, 10, 12syl3anc 1368 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)))
14 fzdif2 32641 . . . . . . 7 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
157, 14syl 17 . . . . . 6 (𝑁 ∈ ℕ → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
16 difss 4128 . . . . . 6 ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁)
1715, 16eqsstrrdi 4032 . . . . 5 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁))
1817adantr 479 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
19 resmpo 7540 . . . 4 (((1...(𝑁 − 1)) ⊆ (1...𝑁) ∧ (1...(𝑁 − 1)) ⊆ (1...𝑁)) → ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗)))
2018, 18, 19syl2anc 582 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗)))
211, 2matmpo 33535 . . . . 5 (𝑀𝐵𝑀 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)))
2221reseq1d 5984 . . . 4 (𝑀𝐵 → (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
2322adantl 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) = ((𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (𝑖𝑀𝑗)) ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
2415adantr 479 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
25 eqidd 2726 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑖𝑀𝑗) = (𝑖𝑀𝑗))
2624, 24, 25mpoeq123dv 7495 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑀𝑗)))
2720, 23, 263eqtr4rd 2776 . 2 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑀𝑗)) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
283, 13, 273eqtrd 2769 1 ((𝑁 ∈ ℕ ∧ 𝑀𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cdif 3941  wss 3944  {csn 4630   × cxp 5676  cres 5680  cfv 6549  (class class class)co 7419  cmpo 7421  1c1 11141  cmin 11476  cn 12245  cuz 12855  ...cfz 13519  Basecbs 17183   Mat cmat 22351   subMat csubma 22522  subMat1csmat 33525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-hom 17260  df-cco 17261  df-0g 17426  df-prds 17432  df-pws 17434  df-sra 21070  df-rgmod 21071  df-dsmm 21683  df-frlm 21698  df-mat 22352  df-subma 22523  df-smat 33526
This theorem is referenced by:  madjusmdetlem3  33561
  Copyright terms: Public domain W3C validator