![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemefrs29bpre1 | Structured version Visualization version GIF version |
Description: TODO: FIX COMMENT. (Contributed by NM, 29-Mar-2013.) |
Ref | Expression |
---|---|
cdlemefrs27.b | β’ π΅ = (BaseβπΎ) |
cdlemefrs27.l | β’ β€ = (leβπΎ) |
cdlemefrs27.j | β’ β¨ = (joinβπΎ) |
cdlemefrs27.m | β’ β§ = (meetβπΎ) |
cdlemefrs27.a | β’ π΄ = (AtomsβπΎ) |
cdlemefrs27.h | β’ π» = (LHypβπΎ) |
cdlemefrs27.eq | β’ (π = π β (π β π)) |
cdlemefrs27.nb | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π β§ (π β π΄ β§ (Β¬ π β€ π β§ π))) β π β π΅) |
cdlemefrs27.rnb | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ π) β β¦π / π β¦π β π΅) |
Ref | Expression |
---|---|
cdlemefrs29bpre1 | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ π) β βπ§ β π΅ βπ β π΄ (((Β¬ π β€ π β§ π) β§ (π β¨ (π β§ π)) = π ) β π§ = (π β¨ (π β§ π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemefrs27.rnb | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ π) β β¦π / π β¦π β π΅) | |
2 | cdlemefrs27.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
3 | cdlemefrs27.l | . . . . 5 β’ β€ = (leβπΎ) | |
4 | cdlemefrs27.j | . . . . 5 β’ β¨ = (joinβπΎ) | |
5 | cdlemefrs27.m | . . . . 5 β’ β§ = (meetβπΎ) | |
6 | cdlemefrs27.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
7 | cdlemefrs27.h | . . . . 5 β’ π» = (LHypβπΎ) | |
8 | cdlemefrs27.eq | . . . . 5 β’ (π = π β (π β π)) | |
9 | cdlemefrs27.nb | . . . . 5 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π β§ (π β π΄ β§ (Β¬ π β€ π β§ π))) β π β π΅) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | cdlemefrs29bpre0 39938 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ π) β (βπ β π΄ (((Β¬ π β€ π β§ π) β§ (π β¨ (π β§ π)) = π ) β π§ = (π β¨ (π β§ π))) β π§ = β¦π / π β¦π)) |
11 | 10 | rexbidv 3169 | . . 3 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ π) β (βπ§ β π΅ βπ β π΄ (((Β¬ π β€ π β§ π) β§ (π β¨ (π β§ π)) = π ) β π§ = (π β¨ (π β§ π))) β βπ§ β π΅ π§ = β¦π / π β¦π)) |
12 | risset 3221 | . . 3 β’ (β¦π / π β¦π β π΅ β βπ§ β π΅ π§ = β¦π / π β¦π) | |
13 | 11, 12 | bitr4di 288 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ π) β (βπ§ β π΅ βπ β π΄ (((Β¬ π β€ π β§ π) β§ (π β¨ (π β§ π)) = π ) β π§ = (π β¨ (π β§ π))) β β¦π / π β¦π β π΅)) |
14 | 1, 13 | mpbird 256 | 1 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ π) β βπ§ β π΅ βπ β π΄ (((Β¬ π β€ π β§ π) β§ (π β¨ (π β§ π)) = π ) β π§ = (π β¨ (π β§ π)))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 βwral 3051 βwrex 3060 β¦csb 3890 class class class wbr 5148 βcfv 6547 (class class class)co 7417 Basecbs 17179 lecple 17239 joincjn 18302 meetcmee 18303 Atomscatm 38804 HLchlt 38891 LHypclh 39526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-lat 18423 df-oposet 38717 df-ol 38719 df-oml 38720 df-covers 38807 df-ats 38808 df-atl 38839 df-cvlat 38863 df-hlat 38892 df-lhyp 39530 |
This theorem is referenced by: cdlemefrs29cpre1 39940 cdlemefrs32fva 39942 cdlemefs29bpre1N 39959 |
Copyright terms: Public domain | W3C validator |