![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrn0degnn0 | Structured version Visualization version GIF version |
Description: In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 1-Apr-2021.) |
Ref | Expression |
---|---|
fusgrn0degnn0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
fusgrn0degnn0 | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4346 | . . 3 ⊢ (𝑉 ≠ ∅ ↔ ∃𝑘 𝑘 ∈ 𝑉) | |
2 | fusgrn0degnn0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | vtxdgfusgr 29188 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → ∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0) |
4 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑢 = 𝑘 → ((VtxDeg‘𝐺)‘𝑢) = ((VtxDeg‘𝐺)‘𝑘)) | |
5 | 4 | eleq1d 2817 | . . . . . . 7 ⊢ (𝑢 = 𝑘 → (((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 ↔ ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0)) |
6 | 5 | rspcv 3608 | . . . . . 6 ⊢ (𝑘 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0)) |
7 | risset 3229 | . . . . . . . 8 ⊢ (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) | |
8 | fveqeq2 6900 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ((VtxDeg‘𝐺)‘𝑘) = 𝑛)) | |
9 | eqcom 2738 | . . . . . . . . . . . 12 ⊢ (((VtxDeg‘𝐺)‘𝑘) = 𝑛 ↔ 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) | |
10 | 8, 9 | bitrdi 287 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ 𝑛 = ((VtxDeg‘𝐺)‘𝑘))) |
11 | 10 | rexbidv 3177 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑘 → (∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘))) |
12 | 11 | rspcev 3612 | . . . . . . . . 9 ⊢ ((𝑘 ∈ 𝑉 ∧ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
13 | 12 | expcom 413 | . . . . . . . 8 ⊢ (∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘) → (𝑘 ∈ 𝑉 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
14 | 7, 13 | sylbi 216 | . . . . . . 7 ⊢ (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → (𝑘 ∈ 𝑉 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
15 | 14 | com12 32 | . . . . . 6 ⊢ (𝑘 ∈ 𝑉 → (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
16 | 6, 15 | syld 47 | . . . . 5 ⊢ (𝑘 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
17 | 3, 16 | syl5 34 | . . . 4 ⊢ (𝑘 ∈ 𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
18 | 17 | exlimiv 1932 | . . 3 ⊢ (∃𝑘 𝑘 ∈ 𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
19 | 1, 18 | sylbi 216 | . 2 ⊢ (𝑉 ≠ ∅ → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
20 | 19 | impcom 407 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ∅c0 4322 ‘cfv 6543 ℕ0cn0 12479 Vtxcvtx 28689 FinUSGraphcfusgr 29006 VtxDegcvtxdg 29155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-n0 12480 df-xnn0 12552 df-z 12566 df-uz 12830 df-xadd 13100 df-fz 13492 df-hash 14298 df-vtx 28691 df-iedg 28692 df-edg 28741 df-uhgr 28751 df-upgr 28775 df-umgr 28776 df-uspgr 28843 df-usgr 28844 df-fusgr 29007 df-vtxdg 29156 |
This theorem is referenced by: friendshipgt3 30084 |
Copyright terms: Public domain | W3C validator |