| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrn0degnn0 | Structured version Visualization version GIF version | ||
| Description: In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 1-Apr-2021.) |
| Ref | Expression |
|---|---|
| fusgrn0degnn0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| fusgrn0degnn0 | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4318 | . . 3 ⊢ (𝑉 ≠ ∅ ↔ ∃𝑘 𝑘 ∈ 𝑉) | |
| 2 | fusgrn0degnn0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | vtxdgfusgr 29432 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → ∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0) |
| 4 | fveq2 6860 | . . . . . . . 8 ⊢ (𝑢 = 𝑘 → ((VtxDeg‘𝐺)‘𝑢) = ((VtxDeg‘𝐺)‘𝑘)) | |
| 5 | 4 | eleq1d 2814 | . . . . . . 7 ⊢ (𝑢 = 𝑘 → (((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 ↔ ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0)) |
| 6 | 5 | rspcv 3587 | . . . . . 6 ⊢ (𝑘 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0)) |
| 7 | risset 3213 | . . . . . . . 8 ⊢ (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) | |
| 8 | fveqeq2 6869 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ((VtxDeg‘𝐺)‘𝑘) = 𝑛)) | |
| 9 | eqcom 2737 | . . . . . . . . . . . 12 ⊢ (((VtxDeg‘𝐺)‘𝑘) = 𝑛 ↔ 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) | |
| 10 | 8, 9 | bitrdi 287 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ 𝑛 = ((VtxDeg‘𝐺)‘𝑘))) |
| 11 | 10 | rexbidv 3158 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑘 → (∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘))) |
| 12 | 11 | rspcev 3591 | . . . . . . . . 9 ⊢ ((𝑘 ∈ 𝑉 ∧ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
| 13 | 12 | expcom 413 | . . . . . . . 8 ⊢ (∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘) → (𝑘 ∈ 𝑉 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 14 | 7, 13 | sylbi 217 | . . . . . . 7 ⊢ (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → (𝑘 ∈ 𝑉 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 15 | 14 | com12 32 | . . . . . 6 ⊢ (𝑘 ∈ 𝑉 → (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 16 | 6, 15 | syld 47 | . . . . 5 ⊢ (𝑘 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 17 | 3, 16 | syl5 34 | . . . 4 ⊢ (𝑘 ∈ 𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 18 | 17 | exlimiv 1930 | . . 3 ⊢ (∃𝑘 𝑘 ∈ 𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 19 | 1, 18 | sylbi 217 | . 2 ⊢ (𝑉 ≠ ∅ → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 20 | 19 | impcom 407 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∅c0 4298 ‘cfv 6513 ℕ0cn0 12448 Vtxcvtx 28929 FinUSGraphcfusgr 29249 VtxDegcvtxdg 29399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-xnn0 12522 df-z 12536 df-uz 12800 df-xadd 13079 df-fz 13475 df-hash 14302 df-vtx 28931 df-iedg 28932 df-edg 28981 df-uhgr 28991 df-upgr 29015 df-umgr 29016 df-uspgr 29083 df-usgr 29084 df-fusgr 29250 df-vtxdg 29400 |
| This theorem is referenced by: friendshipgt3 30333 |
| Copyright terms: Public domain | W3C validator |