Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgrn0degnn0 Structured version   Visualization version   GIF version

Theorem fusgrn0degnn0 27293
 Description: In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 1-Apr-2021.)
Hypothesis
Ref Expression
fusgrn0degnn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgrn0degnn0 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)
Distinct variable groups:   𝑛,𝐺,𝑣   𝑣,𝑉
Allowed substitution hint:   𝑉(𝑛)

Proof of Theorem fusgrn0degnn0
Dummy variables 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4263 . . 3 (𝑉 ≠ ∅ ↔ ∃𝑘 𝑘𝑉)
2 fusgrn0degnn0.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32vtxdgfusgr 27292 . . . . 5 (𝐺 ∈ FinUSGraph → ∀𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0)
4 fveq2 6649 . . . . . . . 8 (𝑢 = 𝑘 → ((VtxDeg‘𝐺)‘𝑢) = ((VtxDeg‘𝐺)‘𝑘))
54eleq1d 2877 . . . . . . 7 (𝑢 = 𝑘 → (((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 ↔ ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0))
65rspcv 3569 . . . . . 6 (𝑘𝑉 → (∀𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0))
7 risset 3229 . . . . . . . 8 (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘))
8 fveqeq2 6658 . . . . . . . . . . . 12 (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ((VtxDeg‘𝐺)‘𝑘) = 𝑛))
9 eqcom 2808 . . . . . . . . . . . 12 (((VtxDeg‘𝐺)‘𝑘) = 𝑛𝑛 = ((VtxDeg‘𝐺)‘𝑘))
108, 9syl6bb 290 . . . . . . . . . . 11 (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛𝑛 = ((VtxDeg‘𝐺)‘𝑘)))
1110rexbidv 3259 . . . . . . . . . 10 (𝑣 = 𝑘 → (∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)))
1211rspcev 3574 . . . . . . . . 9 ((𝑘𝑉 ∧ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)
1312expcom 417 . . . . . . . 8 (∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘) → (𝑘𝑉 → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
147, 13sylbi 220 . . . . . . 7 (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → (𝑘𝑉 → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
1514com12 32 . . . . . 6 (𝑘𝑉 → (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
166, 15syld 47 . . . . 5 (𝑘𝑉 → (∀𝑢𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
173, 16syl5 34 . . . 4 (𝑘𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
1817exlimiv 1931 . . 3 (∃𝑘 𝑘𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
191, 18sylbi 220 . 2 (𝑉 ≠ ∅ → (𝐺 ∈ FinUSGraph → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛))
2019impcom 411 1 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣𝑉𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  ∃wrex 3110  ∅c0 4246  ‘cfv 6328  ℕ0cn0 11889  Vtxcvtx 26793  FinUSGraphcfusgr 27110  VtxDegcvtxdg 27259 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-xadd 12500  df-fz 12890  df-hash 13691  df-vtx 26795  df-iedg 26796  df-edg 26845  df-uhgr 26855  df-upgr 26879  df-umgr 26880  df-uspgr 26947  df-usgr 26948  df-fusgr 27111  df-vtxdg 27260 This theorem is referenced by:  friendshipgt3  28187
 Copyright terms: Public domain W3C validator