![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fusgrn0degnn0 | Structured version Visualization version GIF version |
Description: In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 1-Apr-2021.) |
Ref | Expression |
---|---|
fusgrn0degnn0.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
fusgrn0degnn0 | β’ ((πΊ β FinUSGraph β§ π β β ) β βπ£ β π βπ β β0 ((VtxDegβπΊ)βπ£) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4347 | . . 3 β’ (π β β β βπ π β π) | |
2 | fusgrn0degnn0.v | . . . . . 6 β’ π = (VtxβπΊ) | |
3 | 2 | vtxdgfusgr 29019 | . . . . 5 β’ (πΊ β FinUSGraph β βπ’ β π ((VtxDegβπΊ)βπ’) β β0) |
4 | fveq2 6892 | . . . . . . . 8 β’ (π’ = π β ((VtxDegβπΊ)βπ’) = ((VtxDegβπΊ)βπ)) | |
5 | 4 | eleq1d 2817 | . . . . . . 7 β’ (π’ = π β (((VtxDegβπΊ)βπ’) β β0 β ((VtxDegβπΊ)βπ) β β0)) |
6 | 5 | rspcv 3609 | . . . . . 6 β’ (π β π β (βπ’ β π ((VtxDegβπΊ)βπ’) β β0 β ((VtxDegβπΊ)βπ) β β0)) |
7 | risset 3229 | . . . . . . . 8 β’ (((VtxDegβπΊ)βπ) β β0 β βπ β β0 π = ((VtxDegβπΊ)βπ)) | |
8 | fveqeq2 6901 | . . . . . . . . . . . 12 β’ (π£ = π β (((VtxDegβπΊ)βπ£) = π β ((VtxDegβπΊ)βπ) = π)) | |
9 | eqcom 2738 | . . . . . . . . . . . 12 β’ (((VtxDegβπΊ)βπ) = π β π = ((VtxDegβπΊ)βπ)) | |
10 | 8, 9 | bitrdi 286 | . . . . . . . . . . 11 β’ (π£ = π β (((VtxDegβπΊ)βπ£) = π β π = ((VtxDegβπΊ)βπ))) |
11 | 10 | rexbidv 3177 | . . . . . . . . . 10 β’ (π£ = π β (βπ β β0 ((VtxDegβπΊ)βπ£) = π β βπ β β0 π = ((VtxDegβπΊ)βπ))) |
12 | 11 | rspcev 3613 | . . . . . . . . 9 β’ ((π β π β§ βπ β β0 π = ((VtxDegβπΊ)βπ)) β βπ£ β π βπ β β0 ((VtxDegβπΊ)βπ£) = π) |
13 | 12 | expcom 413 | . . . . . . . 8 β’ (βπ β β0 π = ((VtxDegβπΊ)βπ) β (π β π β βπ£ β π βπ β β0 ((VtxDegβπΊ)βπ£) = π)) |
14 | 7, 13 | sylbi 216 | . . . . . . 7 β’ (((VtxDegβπΊ)βπ) β β0 β (π β π β βπ£ β π βπ β β0 ((VtxDegβπΊ)βπ£) = π)) |
15 | 14 | com12 32 | . . . . . 6 β’ (π β π β (((VtxDegβπΊ)βπ) β β0 β βπ£ β π βπ β β0 ((VtxDegβπΊ)βπ£) = π)) |
16 | 6, 15 | syld 47 | . . . . 5 β’ (π β π β (βπ’ β π ((VtxDegβπΊ)βπ’) β β0 β βπ£ β π βπ β β0 ((VtxDegβπΊ)βπ£) = π)) |
17 | 3, 16 | syl5 34 | . . . 4 β’ (π β π β (πΊ β FinUSGraph β βπ£ β π βπ β β0 ((VtxDegβπΊ)βπ£) = π)) |
18 | 17 | exlimiv 1932 | . . 3 β’ (βπ π β π β (πΊ β FinUSGraph β βπ£ β π βπ β β0 ((VtxDegβπΊ)βπ£) = π)) |
19 | 1, 18 | sylbi 216 | . 2 β’ (π β β β (πΊ β FinUSGraph β βπ£ β π βπ β β0 ((VtxDegβπΊ)βπ£) = π)) |
20 | 19 | impcom 407 | 1 β’ ((πΊ β FinUSGraph β§ π β β ) β βπ£ β π βπ β β0 ((VtxDegβπΊ)βπ£) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 βwex 1780 β wcel 2105 β wne 2939 βwral 3060 βwrex 3069 β c0 4323 βcfv 6544 β0cn0 12477 Vtxcvtx 28520 FinUSGraphcfusgr 28837 VtxDegcvtxdg 28986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-oadd 8473 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-dju 9899 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-xadd 13098 df-fz 13490 df-hash 14296 df-vtx 28522 df-iedg 28523 df-edg 28572 df-uhgr 28582 df-upgr 28606 df-umgr 28607 df-uspgr 28674 df-usgr 28675 df-fusgr 28838 df-vtxdg 28987 |
This theorem is referenced by: friendshipgt3 29915 |
Copyright terms: Public domain | W3C validator |