| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fusgrn0degnn0 | Structured version Visualization version GIF version | ||
| Description: In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 1-Apr-2021.) |
| Ref | Expression |
|---|---|
| fusgrn0degnn0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| fusgrn0degnn0 | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4300 | . . 3 ⊢ (𝑉 ≠ ∅ ↔ ∃𝑘 𝑘 ∈ 𝑉) | |
| 2 | fusgrn0degnn0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | vtxdgfusgr 29477 | . . . . 5 ⊢ (𝐺 ∈ FinUSGraph → ∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0) |
| 4 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑢 = 𝑘 → ((VtxDeg‘𝐺)‘𝑢) = ((VtxDeg‘𝐺)‘𝑘)) | |
| 5 | 4 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑢 = 𝑘 → (((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 ↔ ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0)) |
| 6 | 5 | rspcv 3568 | . . . . . 6 ⊢ (𝑘 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0)) |
| 7 | risset 3207 | . . . . . . . 8 ⊢ (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) | |
| 8 | fveqeq2 6831 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ((VtxDeg‘𝐺)‘𝑘) = 𝑛)) | |
| 9 | eqcom 2738 | . . . . . . . . . . . 12 ⊢ (((VtxDeg‘𝐺)‘𝑘) = 𝑛 ↔ 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) | |
| 10 | 8, 9 | bitrdi 287 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑘 → (((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ 𝑛 = ((VtxDeg‘𝐺)‘𝑘))) |
| 11 | 10 | rexbidv 3156 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑘 → (∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛 ↔ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘))) |
| 12 | 11 | rspcev 3572 | . . . . . . . . 9 ⊢ ((𝑘 ∈ 𝑉 ∧ ∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘)) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
| 13 | 12 | expcom 413 | . . . . . . . 8 ⊢ (∃𝑛 ∈ ℕ0 𝑛 = ((VtxDeg‘𝐺)‘𝑘) → (𝑘 ∈ 𝑉 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 14 | 7, 13 | sylbi 217 | . . . . . . 7 ⊢ (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → (𝑘 ∈ 𝑉 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 15 | 14 | com12 32 | . . . . . 6 ⊢ (𝑘 ∈ 𝑉 → (((VtxDeg‘𝐺)‘𝑘) ∈ ℕ0 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 16 | 6, 15 | syld 47 | . . . . 5 ⊢ (𝑘 ∈ 𝑉 → (∀𝑢 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑢) ∈ ℕ0 → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 17 | 3, 16 | syl5 34 | . . . 4 ⊢ (𝑘 ∈ 𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 18 | 17 | exlimiv 1931 | . . 3 ⊢ (∃𝑘 𝑘 ∈ 𝑉 → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 19 | 1, 18 | sylbi 217 | . 2 ⊢ (𝑉 ≠ ∅ → (𝐺 ∈ FinUSGraph → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛)) |
| 20 | 19 | impcom 407 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → ∃𝑣 ∈ 𝑉 ∃𝑛 ∈ ℕ0 ((VtxDeg‘𝐺)‘𝑣) = 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∅c0 4280 ‘cfv 6481 ℕ0cn0 12381 Vtxcvtx 28974 FinUSGraphcfusgr 29294 VtxDegcvtxdg 29444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-xadd 13012 df-fz 13408 df-hash 14238 df-vtx 28976 df-iedg 28977 df-edg 29026 df-uhgr 29036 df-upgr 29060 df-umgr 29061 df-uspgr 29128 df-usgr 29129 df-fusgr 29295 df-vtxdg 29445 |
| This theorem is referenced by: friendshipgt3 30378 |
| Copyright terms: Public domain | W3C validator |