| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmsubcsetc | Structured version Visualization version GIF version | ||
| Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| rnghmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
| rnghmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rnghmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| rnghmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rnghmsubcsetc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 2 | rnghmsubcsetc.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) | |
| 3 | 1, 2 | rnghmsscmap 20545 | . . 3 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
| 4 | rnghmsubcsetc.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 5 | rnghmsubcsetc.c | . . . . 5 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | 5, 1, 6 | estrchomfeqhom 18103 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
| 8 | 5, 1, 6 | estrchomfval 18093 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
| 9 | 7, 8 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
| 10 | 3, 4, 9 | 3brtr4d 5141 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘𝐶)) |
| 11 | 5, 1, 2, 4 | rnghmsubcsetclem1 20546 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| 12 | 5, 1, 2, 4 | rnghmsubcsetclem2 20547 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 13 | 11, 12 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 14 | 13 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 15 | eqid 2730 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 16 | eqid 2730 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 17 | eqid 2730 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 18 | 5 | estrccat 18100 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 19 | 1, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 20 | incom 4174 | . . . . 5 ⊢ (Rng ∩ 𝑈) = (𝑈 ∩ Rng) | |
| 21 | 2, 20 | eqtrdi 2781 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| 22 | 21, 4 | rnghmresfn 20534 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| 23 | 15, 16, 17, 19, 22 | issubc2 17804 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘𝐶) ↔ (𝐻 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
| 24 | 10, 14, 23 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∩ cin 3915 〈cop 4597 class class class wbr 5109 × cxp 5638 ↾ cres 5642 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 ↑m cmap 8801 Basecbs 17185 Hom chom 17237 compcco 17238 Catccat 17631 Idccid 17632 Homf chomf 17633 ⊆cat cssc 17775 Subcatcsubc 17777 ExtStrCatcestrc 18089 Rngcrng 20067 RngHom crnghm 20349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-hom 17250 df-cco 17251 df-0g 17410 df-cat 17635 df-cid 17636 df-homf 17637 df-ssc 17778 df-resc 17779 df-subc 17780 df-estrc 18090 df-mgm 18573 df-mgmhm 18625 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-ghm 19151 df-abl 19719 df-mgp 20056 df-rng 20068 df-rnghm 20351 df-rngc 20532 |
| This theorem is referenced by: rngccat 20549 rngcid 20550 rngcifuestrc 20554 funcrngcsetc 20555 |
| Copyright terms: Public domain | W3C validator |