| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmsubcsetc | Structured version Visualization version GIF version | ||
| Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| rnghmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
| rnghmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rnghmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
| rnghmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rnghmsubcsetc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 2 | rnghmsubcsetc.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) | |
| 3 | 1, 2 | rnghmsscmap 20551 | . . 3 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
| 4 | rnghmsubcsetc.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) | |
| 5 | rnghmsubcsetc.c | . . . . 5 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 7 | 5, 1, 6 | estrchomfeqhom 18048 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
| 8 | 5, 1, 6 | estrchomfval 18038 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
| 9 | 7, 8 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
| 10 | 3, 4, 9 | 3brtr4d 5125 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘𝐶)) |
| 11 | 5, 1, 2, 4 | rnghmsubcsetclem1 20552 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| 12 | 5, 1, 2, 4 | rnghmsubcsetclem2 20553 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 13 | 11, 12 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 14 | 13 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 15 | eqid 2731 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 16 | eqid 2731 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 17 | eqid 2731 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 18 | 5 | estrccat 18045 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 19 | 1, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 20 | incom 4158 | . . . . 5 ⊢ (Rng ∩ 𝑈) = (𝑈 ∩ Rng) | |
| 21 | 2, 20 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| 22 | 21, 4 | rnghmresfn 20540 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| 23 | 15, 16, 17, 19, 22 | issubc2 17749 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘𝐶) ↔ (𝐻 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
| 24 | 10, 14, 23 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3896 〈cop 4581 class class class wbr 5093 × cxp 5617 ↾ cres 5621 ‘cfv 6487 (class class class)co 7352 ∈ cmpo 7354 ↑m cmap 8756 Basecbs 17126 Hom chom 17178 compcco 17179 Catccat 17576 Idccid 17577 Homf chomf 17578 ⊆cat cssc 17720 Subcatcsubc 17722 ExtStrCatcestrc 18034 Rngcrng 20076 RngHom crnghm 20358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-hom 17191 df-cco 17192 df-0g 17351 df-cat 17580 df-cid 17581 df-homf 17582 df-ssc 17723 df-resc 17724 df-subc 17725 df-estrc 18035 df-mgm 18554 df-mgmhm 18606 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-grp 18855 df-ghm 19131 df-abl 19701 df-mgp 20065 df-rng 20077 df-rnghm 20360 df-rngc 20538 |
| This theorem is referenced by: rngccat 20555 rngcid 20556 rngcifuestrc 20560 funcrngcsetc 20561 |
| Copyright terms: Public domain | W3C validator |