Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnghmsubcsetc | Structured version Visualization version GIF version |
Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
Ref | Expression |
---|---|
rnghmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
rnghmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rnghmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) |
rnghmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rnghmsubcsetc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | rnghmsubcsetc.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Rng ∩ 𝑈)) | |
3 | 1, 2 | rnghmsscmap 45420 | . . 3 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
4 | rnghmsubcsetc.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | |
5 | rnghmsubcsetc.c | . . . . 5 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
6 | eqid 2738 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
7 | 5, 1, 6 | estrchomfeqhom 17768 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
8 | 5, 1, 6 | estrchomfval 17758 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
9 | 7, 8 | eqtrd 2778 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
10 | 3, 4, 9 | 3brtr4d 5102 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘𝐶)) |
11 | 5, 1, 2, 4 | rnghmsubcsetclem1 45421 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
12 | 5, 1, 2, 4 | rnghmsubcsetclem2 45422 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
13 | 11, 12 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
14 | 13 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
15 | eqid 2738 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
16 | eqid 2738 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
17 | eqid 2738 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
18 | 5 | estrccat 17765 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
19 | 1, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
20 | incom 4131 | . . . . 5 ⊢ (Rng ∩ 𝑈) = (𝑈 ∩ Rng) | |
21 | 2, 20 | eqtrdi 2795 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
22 | 21, 4 | rnghmresfn 45409 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
23 | 15, 16, 17, 19, 22 | issubc2 17467 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘𝐶) ↔ (𝐻 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
24 | 10, 14, 23 | mpbir2and 709 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 〈cop 4564 class class class wbr 5070 × cxp 5578 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ↑m cmap 8573 Basecbs 16840 Hom chom 16899 compcco 16900 Catccat 17290 Idccid 17291 Homf chomf 17292 ⊆cat cssc 17436 Subcatcsubc 17438 ExtStrCatcestrc 17754 Rngcrng 45320 RngHomo crngh 45331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-hom 16912 df-cco 16913 df-0g 17069 df-cat 17294 df-cid 17295 df-homf 17296 df-ssc 17439 df-resc 17440 df-subc 17441 df-estrc 17755 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-ghm 18747 df-abl 19304 df-mgp 19636 df-mgmhm 45221 df-rng0 45321 df-rnghomo 45333 df-rngc 45405 |
This theorem is referenced by: rngccat 45424 rngcid 45425 rngcifuestrc 45443 funcrngcsetc 45444 |
Copyright terms: Public domain | W3C validator |